Computability and Computational Complexity of the Evolution of Nonlinear Dynamical Systems
Conference paper
- 1 Citations
- 1.4k Downloads
Abstract
Nonlinear dynamical systems abound as models of natural phenomena. They are often characterized by highly unpredictable behaviour which is hard to analyze as it occurs, for example, in chaotic systems. A basic problem is to understand what kind of information we can realistically expect to extract from those systems, especially information concerning their long-term evolution. Here we review a few recent results which look at this problem from a computational perspective.
Keywords
Computational Complexity Periodic Orbit Turing Machine Nonlinear Dynamical System Lipschitz Constant
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer (2001)Google Scholar
- 2.Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1–270 (1889)Google Scholar
- 3.Hadamard, J.: Les surfaces à courbures opposées et leurs lignes géodésiques. J. Math. Pures et Appl. 4, 27–73 (1898)Google Scholar
- 4.Birkhoff, G.D.: Dynamical Systems. American Mathematical Society Colloquium Publications, vol. 9. American Mathematical Society (1927)Google Scholar
- 5.Kolmogorov, A.N.: Preservation of conditionally periodic movements with small change in the hamiltonian function. Doklady Akademii Nauk SSSR 98, 527–530 (1954)MathSciNetzbMATHGoogle Scholar
- 6.Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of the second order, i: The equation y ″ + k(1 − y 2)y ′ + y = bλk cos(λt + a), k large. J. Lond. Math. Soc. 20(3), 180–189 (1945)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
- 9.Smale, S.: Mathematical problems for the next century. Math. Intelligencer 20, 7–15 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Tucker, W.: The Lorenz attractor exists. In: Acad, C.R. (ed.) Sci. Paris. Series I - Mathematics, vol. 328, pp. 1197–1202 (1999)Google Scholar
- 11.Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press (1974)Google Scholar
- 12.Sontag, E.D.: Mathematical Control Theory, 2nd edn. Springer (1998)Google Scholar
- 13.Hubbard, J.H., West, B.H.: Differential Equations: A Dynamical Systems Approach — Higher-Dimensional Systems. Springer (1995)Google Scholar
- 14.Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press (2004)Google Scholar
- 15.Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoret. Comput. Sci. 138(1), 67–100 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. J. Comput. System Sci. 57(3), 389–398 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret. Comput. Sci. 210(1), 21–71 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theoret. Comput. Sci. 210(1), 217–223 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Odifreddi, P.: Classical Recursion Theory, vol. 2. Elsevier (1999)Google Scholar
- 20.Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability, and hyperbolic systems. Appl. Math. Comput. 219(6), 3039–3054 (2012)MathSciNetCrossRefGoogle Scholar
- 21.Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser (1991)Google Scholar
- 22.Ruohonen, K.: An effective Cauchy-Peano existence theorem for unique solutions. Internat. J. Found. Comput. Sci. 7(2), 151–160 (1996)zbMATHCrossRefGoogle Scholar
- 23.Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361(6), 2913–2927 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Rettinger, R., Weihrauch, K., Zhong, N.: Topological complexity of blowup problems. Journal of Universal Computer Science 15(6), 1301–1316 (2009)MathSciNetzbMATHGoogle Scholar
- 25.Collins, P., Graça, D.S.: Effective computability of solutions of differential inclusions — the ten thousand monkeys approach. Journal of Universal Computer Science 15(6), 1162–1185 (2009)MathSciNetzbMATHGoogle Scholar
- 26.Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser (1982)Google Scholar
- 27.Weihrauch, K.: Computable Analysis: an Introduction. Springer (2000)Google Scholar
- 28.Graça, D.S., Zhong, N.: Computability in planar dynamical systems. Natural Computing 10(4), 1295–1312 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Zhong, N.: Computational unsolvability of domain of attractions of nonlinear systems. Proc. Amer. Math. Soc. 137, 2773–2783 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Graça, D.S.: Some recent developments on Shannon’s General Purpose Analog Computer. Math. Log. Quart. 50(4-5), 473–485 (2004)zbMATHGoogle Scholar
- 31.Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Adv. Appl. Math. 40(3), 330–349 (2008)zbMATHCrossRefGoogle Scholar
- 32.Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving polynomial initial value problems. In: 37th International Symposium on Symbolic and Algebraic Computation (ISSAC 2012) (2012)Google Scholar
- 33.Smith, W.D.: Church’s thesis meets the n-body problem. Appl. Math. Comput. 178(1), 154–183 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Müller, N., Moiske, B.: Solving initial value problems in polynomial time. Proc. 22 JAIIO - PANEL 1993, Part 2, 283–293 (1993)Google Scholar
- 35.Werschulz, A.G.: Computational complexity of one-step methods for systems of differential equations. Math. Comput. 34, 155–174 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Corless, R.M.: A new view of the computational complexity of IVP for ODE. Numer. Algorithms 31, 115–124 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 38.Müller, N.T.: Uniform computational complexity of taylor series. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987)CrossRefGoogle Scholar
- 39.Müller, N.T., Korovina, M.V.: Making big steps in trajectories. Electr. Proc. Theoret. Comput. Sci. 24, 106–119 (2010)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2013