Advertisement

Computability and Computational Complexity of the Evolution of Nonlinear Dynamical Systems

  • Olivier Bournez
  • Daniel S. Graça
  • Amaury Pouly
  • Ning Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7921)

Abstract

Nonlinear dynamical systems abound as models of natural phenomena. They are often characterized by highly unpredictable behaviour which is hard to analyze as it occurs, for example, in chaotic systems. A basic problem is to understand what kind of information we can realistically expect to extract from those systems, especially information concerning their long-term evolution. Here we review a few recent results which look at this problem from a computational perspective.

Keywords

Computational Complexity Periodic Orbit Turing Machine Nonlinear Dynamical System Lipschitz Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer (2001)Google Scholar
  2. 2.
    Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1–270 (1889)Google Scholar
  3. 3.
    Hadamard, J.: Les surfaces à courbures opposées et leurs lignes géodésiques. J. Math. Pures et Appl. 4, 27–73 (1898)Google Scholar
  4. 4.
    Birkhoff, G.D.: Dynamical Systems. American Mathematical Society Colloquium Publications, vol. 9. American Mathematical Society (1927)Google Scholar
  5. 5.
    Kolmogorov, A.N.: Preservation of conditionally periodic movements with small change in the hamiltonian function. Doklady Akademii Nauk SSSR 98, 527–530 (1954)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of the second order, i: The equation y  + k(1 − y 2)y  + y = bλk cos(λt + a), k large. J. Lond. Math. Soc. 20(3), 180–189 (1945)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  9. 9.
    Smale, S.: Mathematical problems for the next century. Math. Intelligencer 20, 7–15 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Tucker, W.: The Lorenz attractor exists. In: Acad, C.R. (ed.) Sci. Paris. Series I - Mathematics, vol. 328, pp. 1197–1202 (1999)Google Scholar
  11. 11.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press (1974)Google Scholar
  12. 12.
    Sontag, E.D.: Mathematical Control Theory, 2nd edn. Springer (1998)Google Scholar
  13. 13.
    Hubbard, J.H., West, B.H.: Differential Equations: A Dynamical Systems Approach — Higher-Dimensional Systems. Springer (1995)Google Scholar
  14. 14.
    Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press (2004)Google Scholar
  15. 15.
    Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoret. Comput. Sci. 138(1), 67–100 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. J. Comput. System Sci. 57(3), 389–398 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret. Comput. Sci. 210(1), 21–71 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theoret. Comput. Sci. 210(1), 217–223 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Odifreddi, P.: Classical Recursion Theory, vol. 2. Elsevier (1999)Google Scholar
  20. 20.
    Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability, and hyperbolic systems. Appl. Math. Comput. 219(6), 3039–3054 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser (1991)Google Scholar
  22. 22.
    Ruohonen, K.: An effective Cauchy-Peano existence theorem for unique solutions. Internat. J. Found. Comput. Sci. 7(2), 151–160 (1996)zbMATHCrossRefGoogle Scholar
  23. 23.
    Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361(6), 2913–2927 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Rettinger, R., Weihrauch, K., Zhong, N.: Topological complexity of blowup problems. Journal of Universal Computer Science 15(6), 1301–1316 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Collins, P., Graça, D.S.: Effective computability of solutions of differential inclusions — the ten thousand monkeys approach. Journal of Universal Computer Science 15(6), 1162–1185 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser (1982)Google Scholar
  27. 27.
    Weihrauch, K.: Computable Analysis: an Introduction. Springer (2000)Google Scholar
  28. 28.
    Graça, D.S., Zhong, N.: Computability in planar dynamical systems. Natural Computing 10(4), 1295–1312 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Zhong, N.: Computational unsolvability of domain of attractions of nonlinear systems. Proc. Amer. Math. Soc. 137, 2773–2783 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Graça, D.S.: Some recent developments on Shannon’s General Purpose Analog Computer. Math. Log. Quart. 50(4-5), 473–485 (2004)zbMATHGoogle Scholar
  31. 31.
    Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Adv. Appl. Math. 40(3), 330–349 (2008)zbMATHCrossRefGoogle Scholar
  32. 32.
    Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving polynomial initial value problems. In: 37th International Symposium on Symbolic and Algebraic Computation (ISSAC 2012) (2012)Google Scholar
  33. 33.
    Smith, W.D.: Church’s thesis meets the n-body problem. Appl. Math. Comput. 178(1), 154–183 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Müller, N., Moiske, B.: Solving initial value problems in polynomial time. Proc. 22 JAIIO - PANEL 1993, Part 2, 283–293 (1993)Google Scholar
  35. 35.
    Werschulz, A.G.: Computational complexity of one-step methods for systems of differential equations. Math. Comput. 34, 155–174 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Corless, R.M.: A new view of the computational complexity of IVP for ODE. Numer. Algorithms 31, 115–124 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  38. 38.
    Müller, N.T.: Uniform computational complexity of taylor series. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  39. 39.
    Müller, N.T., Korovina, M.V.: Making big steps in trajectories. Electr. Proc. Theoret. Comput. Sci. 24, 106–119 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Daniel S. Graça
    • 2
    • 3
  • Amaury Pouly
    • 1
    • 2
  • Ning Zhong
    • 4
  1. 1.LIXEcole PolytechniquePalaiseau CedexFrance
  2. 2.CEDMES/FCTUniversidade do AlgarveFaroPortugal
  3. 3.SQIG/Instituto de TelecomunicaçõesLisbonPortugal
  4. 4.DMSUniversity of CincinnatiCincinnatiU.S.A.

Personalised recommendations