Advertisement

Processes Inspired by the Functioning of Living Cells: Natural Computing Approach

  • Andrzej Ehrenfeucht
  • Grzegorz Rozenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7921)

Abstract

Natural Computing (cf., e.g., [12,13]) is concerned with human-designed computing inspired by nature as well as with computation taking place in nature, i.e., it investigates models, computational techniques, and computational technologies inspired by nature as well as it investigates, in terms of information processing, phenomena/processes taking place in nature.

Examples of the first strand are evolutionary, neural, molecular, and quantum computation, while examples of the second strand are investigations into the computational nature of self-assembly, the computational nature of developmental processes and the computational nature of biochemical reactions. Obviously, the two research strands are not disjoint.

Keywords

Reaction System Biochemical Reaction Computational Technique Formal Framework Ical Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction systems. International Journal of Foundations of Computer Science 22(7), 1499–1517 (2011)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Brijder, R., Ehrenfeucht, A., Rozenberg, G.: A note on Causalities in Reaction Systems. Electronic Communications of ECASST 30 (2010)Google Scholar
  3. 3.
    Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction Systems with Duration. In: Kelemen, J., Kelemenová, A. (eds.) Pǎun Festschrift. LNCS, vol. 6610, pp. 191–202. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Dawkins, R.: The Blind Watchmaker. Penguin, Harmondsworth (1986)Google Scholar
  5. 5.
    Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Qualitative and Quantitative Aspects of a Model for Processes Inspired by the Functioning of the Living Cell. In: Katz, E. (ed.) Biomolecular Information Processing. From Logic Systems to Smart Sensors and Actuators, pp. 303–322. Wiley-VCH Verlag, Weinheim (2012)CrossRefGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Minimal reaction systems. In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIV. LNCS (LNBI), vol. 7625, pp. 102–122. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Combinatorics of life and death for reaction systems. International Journal of Foundations of Computer Science 21(3), 345–356 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions defined by reaction systems. International Journal of Foundations of Computer Science 21(1), 167–178 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ehrenfeucht, A., Rozenberg, G.: Events and Modules in Reaction Systems. Theoretical Computer Science 376(1-2), 3–16 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ehrenfeucht, A., Rozenberg, G.: Reaction Systems. Fundamenta Informaticae 75(1-4), 263–280 (2007)MathSciNetMATHGoogle Scholar
  11. 11.
    Ehrenfeucht, A., Rozenberg, G.: Introducing Time in Reaction Systems. Theoretical Computer Science 410(4-5), 310–322 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kari, L., Rozenberg, G.: The many facets of natural computing. Communications of the ACM 51(10), 72–83 (2008)CrossRefGoogle Scholar
  13. 13.
    Rozenberg, G., Bäck, T., Kok, J. (eds.): Handbook of Natural Computing. Springer (2012)Google Scholar
  14. 14.
    Salomaa, A.: On state sequences defined by reaction systems. In: Constable, R.L., Silva, A. (eds.) Kozen Festschrift. LNCS, vol. 7230, pp. 271–282. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Salomaa, A.: Functions and sequences generated by reaction systems. Theoretical Computer Science 466, 87–96 (2012)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Schlosser, G., Wagner, G.P. (eds.): Modularity in Development and Evolution. The University of Chicago Press, Chicago (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrzej Ehrenfeucht
    • 1
  • Grzegorz Rozenberg
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of Colorado at BoulderBoulderU.S.A.
  2. 2.Leiden Institute of Advanced Computer Science (LIACS)Leiden UniversityLeidenThe Netherlands

Personalised recommendations