Advertisement

Verification Condition Generation for Permission Logics with Abstract Predicates and Abstraction Functions

  • Stefan Heule
  • Ioannis T. Kassios
  • Peter Müller
  • Alexander J. Summers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7920)

Abstract

Abstract predicates are the primary abstraction mechanism for program logics based on access permissions, such as separation logic and implicit dynamic frames. In addition to abstract predicates, it is useful to also support classical abstraction functions, for instance, to encode side-effect-free methods of the program and use them in specifications. However, combining abstract predicates and abstraction functions in a verification condition generator leads to subtle interactions, which complicate reasoning about heap modifications. Such complications may compromise soundness or cause divergence of the prover in the context of automated verification. In this paper, we present an encoding of abstract predicates and abstraction functions in the verification condition generator Boogie. Our encoding is sound and handles recursion in a way that is suitable for automatic verification using SMT solvers. It is implemented in the automatic verifier Chalice.

Keywords

Symbolic Execution Separation Logic Access Permission Abstraction Function Predicate Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Chalice source code repository, http://chalice.codeplex.com
  3. 3.
    Bardou, R.: Verification of Pointer Programs Using Regions and Permissions. PhD thesis, Université de Paris-Sud 11 (2011)Google Scholar
  4. 4.
    Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification and verification: The Spec# experience. CACM 54(6), 81–91 (2011)CrossRefGoogle Scholar
  5. 5.
    Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Darvas, Á., Müller, P.: Reasoning about method calls in interface specifications. JOT 5(5), 59–85 (2006)CrossRefGoogle Scholar
  9. 9.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 287–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In: OOPSLA, pp. 213–226. ACM (2008)Google Scholar
  12. 12.
    Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion synthesis. In: PLDI, pp. 256–265. ACM (2007)Google Scholar
  14. 14.
    Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1(4), 271–281 (1972)zbMATHCrossRefGoogle Scholar
  15. 15.
    Jacobs, B., Smans, J., Piessens, F.: A quick tour of the VeriFast program verifier. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Kassios, I.T., Müller, P., Schwerhoff, M.: Comparing verification condition generation with symbolic execution: an experience report. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 196–208. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Leino, K.R.M.: Specification and verification of object-oriented software. In Markto-berdorf International Summer School 2008, Lecture Notes (2008)Google Scholar
  18. 18.
    Leino, K.R.M.: This is Boogie 2. Working Draft (2008), http://research.microsoft.com/en-us/um/people/leino/papers.html
  19. 19.
    Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order SMT solvers. In: SAC, pp. 615–622. ACM (2009)Google Scholar
  20. 20.
    Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with Chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD V 2008/2009. LNCS, vol. 5705, pp. 195–222. Springer, Heidelberg (2009)Google Scholar
  22. 22.
    Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-structures. In: POPL, pp. 123–136. ACM (2012)Google Scholar
  23. 23.
    Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp. 247–258. ACM (2005)Google Scholar
  24. 24.
    Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS. IEEE Computer Society Press (2002)Google Scholar
  25. 25.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In: POPL, pp. 105–118. ACM (1999)Google Scholar
  26. 26.
    Smans, J., Jacobs, B., Piessens, F.: VeriCool: An automatic verifier for a concurrent object-oriented language. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 220–239. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 148–172. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Summers, A.J., Drossopoulou, S.: A formal semantics for isorecursive and equirecursive state abstractions. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 129–153. Springer, Heidelberg (2013)Google Scholar
  29. 29.
    Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with abstractions. In: POPL, pp. 199–210. ACM (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Heule
    • 1
  • Ioannis T. Kassios
    • 1
  • Peter Müller
    • 1
  • Alexander J. Summers
    • 1
  1. 1.ETH ZurichSwitzerland

Personalised recommendations