Third-Eye Stereo Analysis Evaluation Enhanced by Data Measures

  • Verónica Suaste
  • Diego Caudillo
  • Bok-Suk Shin
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)

Abstract

Third-eye stereo analysis evaluation compares a virtual image, derived from results obtained by binocular stereo analysis, with a recorded image at the same pose. This technique is applied for evaluating stereo matchers on long (or continuous) stereo input sequences where no ground truth is available. The paper provides a critical and constructive discussion of this method. The paper also introduces data measures on input video sequences as an additional tool for analyzing issues of stereo matchers occurring for particular scenarios. The paper also reports on extensive experiments using two top-rated stereo matchers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R., Valiente, G.: An image similarity measure based on graph matching. In: Proc. String Processing Information Retrieval (2000)Google Scholar
  2. 2.
    Canny, J.: A computational approach to edge detection. IEEE Trans. PAMI 8, 679–698 (1986)CrossRefGoogle Scholar
  3. 3.
    Drayer, B.: Image comparison on the base of a combinatorial matching algorithm. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 426–431. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    EISATS benchmark data base. The University of Auckland (2013), www.mi.auckland.ac.nz/EISATS
  5. 5.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Computer Vision 70, 41–54 (2006)CrossRefGoogle Scholar
  6. 6.
    Hermann, S., Morales, S., Klette, R.: Half-resolution semi-global stereo matching. In: Proc. IEEE Intelligent Vehicles Symposium, pp. 201–206 (2011)Google Scholar
  7. 7.
    Hermann, S., Klette, R.: Iterative semi-global matching for robust driver assistance systems. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 465–478. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Kalinic, H., Loncaric, S., Bijnens, B.: A novel image similarity measure for image registration. In: Proc. Image Signal Processing Analysis, pp. 195–199 (2011)Google Scholar
  9. 9.
    Klette, R., Krüger, N., Vaudrey, T., Pauwels, K., Hulle, M., Morales, S., Kandil, F., Haeusler, R., Pugeault, N., Rabe, C., Lappe, M.: Performance of correspondence algorithms in vision-based driver assistance using an online image sequence database. IEEE Trans. Vehicular Technology 60, 2012–2026 (2011)CrossRefGoogle Scholar
  10. 10.
    Khan, W., Suaste, V., Caudillo, D., Klette, R.: Belief propagation stereo matching compared to iSGM on binocular or trinocular video data. MItech-TR-82, The University of Auckland (2013)Google Scholar
  11. 11.
    Morales, S., Klette, R.: A third eye for performance evaluation in stereo sequence analysis. In: Proc. Computer Analysis Images Patterns, pp. 1078–1086 (2009)Google Scholar
  12. 12.
    Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the limits of stereo using variational stereo estimation. In: Proc. IEEE Intelligent Vehicles Symposium, pp. 401–407 (2012)Google Scholar
  13. 13.
    Rosin, P., Ellis, T.: Image difference threshold strategies and shadow detection. In: Proc. British Machine Vision Conf., pp. 347–356 (1995)Google Scholar
  14. 14.
    Thiyagarajan, M., Samundeeswari, S.: A new similarity measure for image segmentation. Int. J. Computer Science Engineering 02, 831–835 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Verónica Suaste
    • 1
  • Diego Caudillo
    • 1
  • Bok-Suk Shin
    • 2
  • Reinhard Klette
    • 2
  1. 1.CIMAT and the University of GuanajuatoMexico
  2. 2.The .enpeda.. ProjectThe University of AucklandNew Zealand

Personalised recommendations