Logically and Physically Reversible Natural Computing: A Tutorial

  • Chris Thachuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7948)


This year marks the 40th anniversary of Charles Bennett’s seminal paper on reversible computing. Bennett’s contribution is remembered as one of the first to demonstrate how any deterministic computation can be simulated by a logically reversible Turing machine. Perhaps less remembered is that the same paper suggests the use of nucleic acids to realise physical reversibility. In context, Bennett’s foresight predates Leonard Adleman’s famous experiments to solve instances of the Hamiltonian path problem using strands of DNA — a landmark date for the field of natural computing — by more than twenty years. The ensuing time has seen active research in both reversible computing and natural computing that has been, for the most part, unrelated. Encouraged by new, experimentally viable DNA computing models, there is a resurgent interest in logically reversible computing by the natural computing community. We survey these recent results, and their underlying ideas, which demonstrate the potential for logically and physically reversible computation using nucleic acids.


reversible computing natural computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cardelli, L.: Two-domain DNA strand displacement. Developments in Computational Models 26, 47–61 (2010)Google Scholar
  4. 4.
    Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 25–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, time-responsive, digital, energy-efficient molecular circuits using DNA strand displacement. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 25–36. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Condon, A., Hu, A.J., Maňuch, J., Thachuk, C.: Less haste, less waste: on recycling and its limits in strand displacement systems. Journal of the Royal Society: Interface Focus 2(4), 512–521 (2012)CrossRefGoogle Scholar
  7. 7.
    Edmonds, J.: Paths, trees, and flowers. Canadian Journal of mathematics 17(3), 449–467 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21, 219–253 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Genot, A.J., Bath, J., Turberfield, A.J.: Reversible logic circuits made of DNA. Journal of the American Chemical Society 133(50), 20080–20083 (2011)CrossRefGoogle Scholar
  10. 10.
    Knight, A.E.: Single enzyme studies: A historical perspective. In: Mashanov, G.I., Batters, C. (eds.) Single Molecule Enzymology. Methods in Molecular Biology, vol. 778, pp. 1–9. Humana Press (2011)Google Scholar
  11. 11.
    Lakin, M.R., Phillips, A.: Modelling, simulating and verifying Turing-powerful strand displacement systems. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 130–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. Journal of Computer and System Sciences 60(2), 354–367 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lecerf, Y.: Machines de Turing réversibles. Récursive insolubilité en n ∈ N de l’équation u = Θn, où Θ est un “isomorphisme de codes”. Comptes Rendus 257, 2597–2600 (1963)MathSciNetGoogle Scholar
  15. 15.
    Lewis, H.R., Papadimitriou, C.H.: Symmetric space-bounded computation. Theoretical Computer Science 19(2), 161–187 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  18. 18.
    Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)CrossRefGoogle Scholar
  19. 19.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)CrossRefGoogle Scholar
  20. 20.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), e424 (2004)CrossRefGoogle Scholar
  21. 21.
    Rotman, B.: Measurement of activity of single molecules of β-D-galactosidase. Proceedings of the National Academy of Sciences of the United States of America 47(12), 1981 (1961)CrossRefGoogle Scholar
  22. 22.
    Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F., Rothemund, P.W.K., Adleman, L.M.: A sticker-based model for DNA computation. Journal of Computational Biology 5(4), 615–629 (1998)CrossRefGoogle Scholar
  23. 23.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  24. 24.
    Seeman, N.C.: Nucleic acid junctions and lattices. Journal of Theoretical Biology 99(2), 237–247 (1982)CrossRefGoogle Scholar
  25. 25.
    Thachuk, C.: Space and energy efficient molecular programming and space efficient text indexing methods for sequence alignment. PhD thesis, University of British Columbia (2012)Google Scholar
  26. 26.
    Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 135–149. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Winfree, E.: Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technology (1998)Google Scholar
  28. 28.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chris Thachuk
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations