Advertisement

Analysis and Improvement of Lindell’s UC-Secure Commitment Schemes

  • Olivier Blazy
  • Céline Chevalier
  • David Pointcheval
  • Damien Vergnaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)

Abstract

In 2011, Lindell proposed an efficient commitment scheme, with a non-interactive opening algorithm, in the Universal Composability (UC) framework. He recently acknowledged a bug in its security analysis for the adaptive case. We analyze the proof of the original paper and propose a simple patch of the scheme. More interestingly, we then modify it and present a more efficient commitment scheme secure in the UC framework, with the same level of security as Lindell’s protocol: adaptive corruptions, with erasures. The security is proven in the standard model (with a Common Reference String) under the classical Decisional Diffie-Hellman assumption. Our proposal is the most efficient UC-secure commitment proposed to date (in terms of computational workload and communication complexity).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient UC-secure authenticated key-exchange for algebraic languages. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.: Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 218–235. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (October 2001)Google Scholar
  6. 6.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. On the Cryptology ePrint Archive, Report 2000/067 (December 2005)Google Scholar
  7. 7.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press (May 2002)Google Scholar
  10. 10.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally composable string commitments with adaptive security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. Cryptology ePrint Archive, Report 2011/180 (2011)Google Scholar
  17. 17.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  18. 18.
    Yao, A.C.: Theory and applications of trapdoor functions. In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press (November 1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olivier Blazy
    • 1
  • Céline Chevalier
    • 2
  • David Pointcheval
    • 3
  • Damien Vergnaud
    • 3
  1. 1.Ruhr-Universität BochumGermany
  2. 2.Université Panthéon-AssasParisFrance
  3. 3.ENSParisFrance

Personalised recommendations