Attacking Atmel’s CryptoMemory EEPROM with Special-Purpose Hardware

  • Alexander Wild
  • Tim Güneysu
  • Amir Moradi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7954)


Atmel’s CryptoMemory devices are non-volatile memories with cryptographically secured access control. Recently, the authentication mechanism of these devices have been shown to be severely vulnerable. More precisely, to recover the secret key the published attack requires only two to six days of computation on a cluster involving 200 CPU cores. In this work, we identified and applied theoretical improvements to this attack and mapped it to a reconfigurable computing cluster, known as RIVYERA. Our solution provides significantly higher performance exceeding the previous implementation by a factor of 7.27, revealing the secret key obtained from the internal state in 0.55 days on average using only 30 authentication frames.


  1. 1.
    Atmel Corporation. CryptoMemory for Removable Storage Devices and Reprogrammable Keys, (retrieved April 15, 2013)
  2. 2.
    Atmel Corporation. CryptoMemory specification (2007), (retrieved April 15, 2013)
  3. 3.
    Balasch, J., Gierlichs, B., Verdult, R., Batina, L., Verbauwhede, I.: Power Analysis of Atmel CryptoMemory – Recovering Keys from Secure EEPROMs. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 19–34. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Biryukov, A., Kizhvatov, I., Zhang, B.: Cryptanalysis of the Atmel Cipher in SecureMemory, CryptoMemory and CryptoRF. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 91–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Biryukov, A., Kizhvatov, I., Zhang, B.: Cryptanalysis of the Atmel Cipher in SecureMemory, CryptoMemory and CryptoRF. IACR Cryptology ePrint Archive, p. 22 (2011)Google Scholar
  6. 6.
  7. 7.
    Dipert, B.: The Zune HD: more than an iPod touch wanna-be? In: EDN (2009)Google Scholar
  8. 8.
    Garcia, F., van Rossum, P., Verdult, R., Wichers Schreur, R.: Dismantling SecureMemory, CryptoMemory and CryptoRF. In: CCS 2010, pp. 250–259. ACM (2010)Google Scholar
  9. 9.
    Giacomelli, M.: SanDisk Sansa Connect,
  10. 10.
    Güneysu, T., Kasper, T., Novotný, M., Paar, C., Rupp, A.: Cryptanalysis with COPACOBANA. IEEE Transactions on Computers 57(11), 1498–1513 (2008)CrossRefGoogle Scholar
  11. 11.
    Güneysu, T., Pfeiffer, G., Paar, C., Schimmler, M.: Three Years of Evolution: Cryptanalysis with COPACOBANA. In: SHARCS 2009, pp. 9–10 (2009)Google Scholar
  12. 12.
    Intel. Intel Xeon Processor 5600 Series: Product Brief, (April 15, 2013)
  13. 13.
    Jarboe, M.: Introduction to CryptoMemory. Atmel Applications Journal 3, 28 (2004)Google Scholar
  14. 14.
    József, S.: AT88SC0204 ChipResetter, (April 15, 2013)
  15. 15.
    Labgear. Labgear HDSR300 High Definition Satellite Receiver. User Guide, (April 15, 2013)
  16. 16.
    NVIDIA Corporation. Checklist for Building a PC that Plays HD DVD or Blue-ray Movies, (retrieved April 15, 2013)
  17. 17.
    SciEngines GmbH,
  18. 18.
    Xilinx. Spartan-3 FPGA Family: Complete Data Sheet. Product Documentation (November 2005)Google Scholar
  19. 19.
    Xilinx. Spartan-3 Generation FPGA User Guide. Product Documentation (June 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Wild
    • 1
  • Tim Güneysu
    • 1
  • Amir Moradi
    • 1
  1. 1.Horst Görtz Institute for IT SecurityRuhr University BochumGermany

Personalised recommendations