An Automated Robotic Manufacturing Process: For the Thermoplastic Panel Building Technology

  • Stylianos Dritsas
  • Mark Goulthorpe
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 369)


This paper presents the design-computation digital fabrication research for a thermoplastic panel technology for housing applications; a high-performance, low-cost building product based on parametric design methodology, glass fiber reinforced composite materials, and numerically controlled robotic fabrication processes. We present a highly integrated schematic design to production workflow, and discuss the potential and challenges of robotic prototyping and fabrication.


Digital Fabrication Architectural Robotics Computer Aided Manufacturing Building Composites Thermoplastic Manufacturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yoshikawa, K., Tanaka, K.: Welding Robots for Steel Frame Structures. Microcomputers in Civil Engineering 12, 43–56 (1997)CrossRefGoogle Scholar
  2. 2.
    Cousineau, L., Miura, N.: Construction Robots, The Search for New Building Technology in Japan. American Society of Civil Engineers. ASCE Press (1998)Google Scholar
  3. 3.
    Gambao, E., Balaguer, C., Gebhart, F.: Robot Assembly System for Computer-Integrated Construction. Automation in Construction 9, 479–487 (2000)CrossRefGoogle Scholar
  4. 4.
    Greig, A., Rivas, S., Blackman, S., Walid, T.: Welding Automation in Space-Frame Bridge Construction. Computer-Aided Civil and Infrastructure Engineering 16, 188–199 (2001)CrossRefGoogle Scholar
  5. 5.
    Gramazio, F., Kohler, M.: Digital Materiality in Architecture. Lars Muller (2008)Google Scholar
  6. 6.
    Liu, P.K., Luh, L.B., Chan, T.Y.: Service Robot for Inspecting Exterior Gas Pipes of High Rise Buildings. In: Proceedings of the World Congress on Engineering, vol. 2 (2009)Google Scholar
  7. 7.
    Curz-Ramirez, R.S., Mae, Y., Arai, T., Takubo, T., Ohara, K.: Vision-Bases Hierarchical Recognition for Dismantling Robot Applied to Interior Renewal of Buildings. Computer-Aided Civil and Infrastructure Engineering 26, 336–355 (2011)CrossRefGoogle Scholar
  8. 8.
    Epps, G.: Decor by Droid: RoboFold is practising origami with aluminium. Wired Magazine (March 2012)Google Scholar
  9. 9.
    UNESCE: Press Release ECE/STAT/05/P03, Geneva, World Robotics Survey (October 11, 2005),
  10. 10.
    Davis, S.M.: Future Perfect. Addison-Wesley, Reading (1987)Google Scholar
  11. 11.
    Pine II, B.J.: Mass Customization: The New Frontier in Business Competition. Harvard Business School Press, Boston (1993)Google Scholar
  12. 12.
    Lampel, J., Mintzberg, H.: Customizing Customization. Sloan Management Review 37, 21–30 (1996)Google Scholar
  13. 13.
    Ramani, K., Cunningham, R., Devanathan, S., Subramaniam, J., Patwardhan, H.: Technology Review Of Mass Customization, School of Mechanical Engineering, Purdue University (2004)Google Scholar
  14. 14.
    Blecker, T., Abdelkafi, N.: Mass Customization: State-of-the-Art and Challenges. In: Mass Customization: Challenges and Solutions, vol. 87, pp. 1–25. Springer, New York (2006)Google Scholar
  15. 15.
    Kolarevic, B.: Architecture in the Digital Age: Design and Manufacturing. Taylor and Francis Group, New York (2003)Google Scholar
  16. 16.
    Kolarevic, B., Klinger, K.: Manufacturing Material Effects. In: Rethinking Design and Making in Architecture, Routledge, New York (2008)Google Scholar
  17. 17.
    Illston, J.M., Domone, P.L.J.: Construction Materials, Their Nature and Behaviour. Spon Press, Taylor and Francis, London, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Harris, B.: Engineering Composite Materials. IOM Communications, London, UK (1999)Google Scholar
  19. 19.
    Tong, L., Mouritz, A.P., Bannister, M.K.: 3D Fibre Reinforced Polymer Composites. Elsevier Science, Oxford (2002)Google Scholar
  20. 20.
    Pigram, D., McGee, W.: Formation Embedded Design. A Methodology for the Integration of Fabrication Constraints into Architectural Design, pp. 122–131. ACADIA (2011)Google Scholar
  21. 21.
    Brell-Cokcan, S., Reis, M., Schmiedhofer, H., Braumann, J.: Digital Design to Digital Production. In: Flank Milling with a 7-Axis CNC-Milling Robot and Parametric Design, eCAADe, pp. 323–330 (2011)Google Scholar
  22. 22.
    Lavallee, J., Vroman, R., Keshet, Y.: Automated Folding of Sheet Metal Components with a Six-Axis Industrial Robot, pp. 144–151. ACADIA (2011)Google Scholar
  23. 23.
    Payne, A.: A Five-axis Robotic Motion Controller for Designers, pp. 162–169. ACADIA (2012)Google Scholar
  24. 24.
    Braumann, J., Brell-Cokcan, S.: Parametric Robot Control. In: Integrated CAD / CAM for Architectural Design, pp. 242–251. ACADIA (2011)Google Scholar
  25. 25.
    Graig, J.J.: Introduction to Robotics. In: Mechanics and Control. Addison-Wesley Series in Electrical and Computer Engineering: Control Engineering (1986)Google Scholar
  26. 26.
    Pieper, D.L.: The kinematics of manipulators under computer control. PhD Thesis, Stanford University, Department of Mechanical Engineering (1968)Google Scholar
  27. 27.
    Denavit, J., Hartenberg, R.S.: A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. Journal of Applied Mechanics, 215–221 (1955)Google Scholar
  28. 28.
    Kucuk, S., Bingul, Z.: Robot Kinematics: Forward and Inverse Kinematics. In: Cubero, S. (ed.) Industrial Robotics: Theory, Modelling and Control, InTech. (2006),
  29. 29.
  30. 30.
    Diaz, J., Dutra, M.S., Pinto, F.: Kinematical and Dynamical Models of KR 6 KUKA Robot, Including the Kinematic Control in a Parallel Processing Platform. In: Lazinica, A., Kawai, H. (eds.) Robot Manipulators New Achievements. InTech. (2010),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stylianos Dritsas
    • 1
  • Mark Goulthorpe
    • 2
  1. 1.Singapore University of Technology and DesignSingapore
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations