Advertisement

Control of HPV Infection and Related Cancer Through Vaccination

  • Nam Phuong Tran
  • Chien-Fu Hung
  • Richard Roden
  • T.-C. Wu
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 193)

Abstract

Human papillomavirus (HPV), the most common sexually transmitted virus, and its associated diseases continue to cause significant morbidity and mortality in over 600 million infected individuals. Major progress has been made with preventative vaccines, and clinical data have emerged regarding the efficacy and cross-reactivity of the two FDA approved L1 virus like particle (VLP)-based vaccines. However, the cost of the approved vaccines currently limits their widespread use in developing countries which carry the greatest burden of HPV-associated diseases. Furthermore, the licensed preventive HPV vaccines only contain two high-risk types of HPV (HPV-16 and HPV-18) which can protect only up to 75 % of all cervical cancers. Thus, second generation preventative vaccine candidates hope to address the issues of cost and broaden protection through the use of more multivalent L1-VLPs, vaccine formulations, or alternative antigens such as L1 capsomers, L2 capsid proteins, and chimeric VLPs. Preventative vaccines are crucial to controlling the transmission of HPV, but there are already hundreds of millions of infected individuals who have HPV-associated lesions that are silently progressing toward malignancy. This raises the need for therapeutic HPV vaccines that can trigger T cell killing of established HPV lesions, including HPV-transformed tumor cells. In order to stimulate such antitumor immune responses, therapeutic vaccine candidates deliver HPV antigens in vivo by employing various bacterial, viral, protein, peptide, dendritic cell, and DNA-based vectors. This book chapter will review the commercially available preventive vaccines, present second generation candidates, and discuss the progress of developing therapeutic HPV vaccines.

Keywords

Human Papillomavirus (HPV) Vaccines Cancer Immunotherapy Virus like particle (VLP) 

Notes

Acknowledgments

We thank Dr. Shiwen Peng for helpful discussion. This review is not intended to be an encyclopedic one, and the authors apologize to those not cited. This work was funded by the National Institutes of Health Cervical Cancer SPORE and Head and Neck Cancer SPORE (P50 CA098252 and P50 CA96784-06).

References

  1. Adams M, Borysiewicz L, Fiander A, Man S, Jasani B, Navabi H, Lipetz C, Evans AS, Mason M (2001) Clinical studies of human papilloma vaccines in pre-invasive and invasive cancer. Vaccine 19:2549–2556CrossRefPubMedGoogle Scholar
  2. Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, Roberts JS, Latimer JA, Moseley RP, Coleman N et al (2003) Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res 9:5205–5213PubMedGoogle Scholar
  3. Bilu D, Sauder DN (2003) Imiquimod: modes of action. Br J Dermatol 149(Suppl 66):5–8PubMedGoogle Scholar
  4. Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME et al (1996) A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347:1523–1527CrossRefPubMedGoogle Scholar
  5. Brooks G, Carroll KC, Butel JS, Morse SA, Mietzneron TA (eds) (2010) Jawetz, Melnick, & Adelberg’s Medical Microbiology, 25th edn. McGraw-Hill Medical, New YorkGoogle Scholar
  6. Brun JL, Dalstein V, Leveque J, Mathevet P, Raulic P, Baldauf JJ, Scholl S, Huynh B, Douvier S, Riethmuller D et al (2011) Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol 204:161–168CrossRefGoogle Scholar
  7. Campo MS, Roden RB (2010) Papillomavirus prophylactic vaccines: established successes, new approaches. J Virol 84:1214–1220CrossRefPubMedGoogle Scholar
  8. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, Jiang B, Goodman MT, Sibug-Saber M, Cozen W et al (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 29:4294–4301CrossRefPubMedGoogle Scholar
  9. Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 5:557–567CrossRefPubMedGoogle Scholar
  10. Chen XZ, Mao XH, Zhu KJ, Jin N, Ye J, Cen JP, Zhou Q, Cheng H (2010) Toll like receptor agonists augment HPV 11 E7-specific T cell responses by modulating monocyte-derived dendritic cells. Arch Dermatol Res 302:57–65CrossRefPubMedGoogle Scholar
  11. Chuang CM, Monie A, Wu A, Hung CF (2009) Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J Biomed Sci 16:49CrossRefPubMedGoogle Scholar
  12. Chuang CM, Monie A, Hung CF, Wu TC (2010) Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J Biomed Sci 17:32CrossRefPubMedGoogle Scholar
  13. Corona Gutierrez CM, Tinoco A, Navarro T, Contreras ML, Cortes RR, Calzado P, Reyes L, Posternak R, Morosoli G, Verde ML et al (2004) Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum Gene Ther 15:421–431CrossRefPubMedGoogle Scholar
  14. Cui Z, Huang L (2005) Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: therapeutic effect against cervical cancer. Cancer Immunol Immunother 54:1180–1190CrossRefPubMedGoogle Scholar
  15. Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, Kitchener HC (2010) Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer 102:1129–1136CrossRefPubMedGoogle Scholar
  16. Daftarian P, Mansour M, Benoit AC, Pohajdak B, Hoskin DW, Brown RG, Kast WM (2006) Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine 24:5235–5244CrossRefPubMedGoogle Scholar
  17. Davidson EJ, Boswell CM, Sehr P, Pawlita M, Tomlinson AE, McVey RJ, Dobson J, Roberts JS, Hickling J, Kitchener HC et al (2003) Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res 63:6032–6041PubMedGoogle Scholar
  18. Derkay CS, Smith RJ, McClay J, van Burik JA, Wiatrak BJ, Arnold J, Berger B, Neefe JR (2005) HspE7 treatment of pediatric recurrent respiratory papillomatosis: final results of an open-label trial. Ann Otol Rhinol Laryngol 114:730–737PubMedGoogle Scholar
  19. Dillner J, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, Hernandez-Avila M, Perez G, Brown DR, Koutsky LA, Tay EH et al (2010) Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. BMJ 341:c3493CrossRefPubMedGoogle Scholar
  20. DiMaio D, Mattoon D (2001) Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene 20:7866–7873CrossRefPubMedGoogle Scholar
  21. Echelman D, Feldman S (2012) Management of cervical precancers: a global perspective. Hematol Oncol Clin North Am 26:31–44Google Scholar
  22. Einstein MH, Kadish AS, Burk RD, Kim MY, Wadler S, Streicher H, Goldberg GL, Runowicz CD (2007) Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol 106:453–460CrossRefPubMedGoogle Scholar
  23. Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F, Carletti I, Dessy FJ, Trofa AF, Schuind A et al (2009) Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin 5:705–719CrossRefPubMedGoogle Scholar
  24. Einstein MH, Baron M, Levin MJ, Chatterjee A, Fox B, Scholar S, Rosen J, Chakhtoura N, Meric D, Dessy FJ et al (2011) Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: Follow-up from Months 12–24 in a Phase III randomized study of healthy women aged 18–45 years. Hum Vaccin 7:1343–1358CrossRefPubMedGoogle Scholar
  25. Embers ME, Budgeon LR, Pickel M, Christensen ND (2002) Protective immunity to rabbit oral and cutaneous papillomaviruses by immunization with short peptides of L2, the minor capsid protein. J Virol 76:9798–9805CrossRefPubMedGoogle Scholar
  26. Fraillery D, Baud D, Pang SY, Schiller J, Bobst M, Zosso N, Ponci F, Nardelli-Haefliger D (2007) Salmonella enterica serovar Typhi Ty21a expressing human papillomavirus type 16 L1 as a potential live vaccine against cervical cancer and typhoid fever. Clin Vaccine Immunol 14:1285–1295CrossRefPubMedGoogle Scholar
  27. Frazer IH, Quinn M, Nicklin JL, Tan J, Perrin LC, Ng P, O’Connor VM, White O, Wendt N, Martin J et al (2004) Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine 23:172–181CrossRefPubMedGoogle Scholar
  28. Gambhira R, Karanam B, Jagu S, Roberts JN, Buck CB, Bossis I, Alphs H, Culp T, Christensen ND, Roden RB (2007) A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J Virol 81:13927–13931CrossRefPubMedGoogle Scholar
  29. Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, Magill M, Silverman M, Urban RG, Hedley ML et al (2004) ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 103:317–326CrossRefPubMedGoogle Scholar
  30. Gaukroger JM, Chandrachud LM, O’Neil BW, Grindlay GJ, Knowles G, Campo MS (1996) Vaccination of cattle with bovine papillomavirus type 4 L2 elicits the production of virus-neutralizing antibodies. J Gen Virol 77:1577–1583CrossRefPubMedGoogle Scholar
  31. Giuliano AR, Palefsky JM, Goldstone S, Moreira ED Jr, Penny ME, Aranda C, Vardas E, Moi H, Jessen H, Hillman R et al (2011) Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med 364:401–411CrossRefPubMedGoogle Scholar
  32. Goldstone SE, Palefsky JM, Winnett MT, Neefe JR (2002) Activity of HspE7, a novel immunotherapy, in patients with anogenital warts. Dis Colon Rectum 45:502–507CrossRefPubMedGoogle Scholar
  33. Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y (2001) Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167:6471–6479PubMedGoogle Scholar
  34. Hoffmann C, Stanke J, Kaufmann AM, Loddenkemper C, Schneider A, Cichon G (2010) Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice. J Immunother 33:136–145CrossRefPubMedGoogle Scholar
  35. Hung CF, Wu TC (2003) Improving DNA vaccine potency via modification of professional antigen presenting cells. Curr Opin Mol Ther 5:20–24CrossRefPubMedGoogle Scholar
  36. Hussain SF, Paterson Y (2004) CD4+CD25+ regulatory T cells that secrete TGFbeta and IL-10 are preferentially induced by a vaccine vector. J Immunother 27:339–346CrossRefPubMedGoogle Scholar
  37. Inovio (2012) A study of VGX-3100 DNA vaccine with electroporation in patients with cervical intraepithelial neoplasia grade 2/3 or 3 (HPV-003). http://clinicaltrials.gov/ct2/show/NCT01304524?term=NCT01304524&rank=1
  38. Jagu S, Karanam B, Gambhira R, Chivukula SV, Chaganti RJ, Lowy DR, Schiller JT, Roden RB (2009) Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. J Natl Cancer Inst 101:782–792CrossRefPubMedGoogle Scholar
  39. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90CrossRefPubMedGoogle Scholar
  40. Kang TH, Monie A, Wu LS, Pang X, Hung CF, Wu TC (2010) Enhancement of protein vaccine potency by in vivo electroporation mediated intramuscular injection. Vaccine 29:1082–1089CrossRefPubMedGoogle Scholar
  41. Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, Adams M, Onon TS, Bauknecht T, Wagner U et al (2002) Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 8:3676–3685PubMedGoogle Scholar
  42. Kawana K, Yoshikawa H, Taketani Y, Yoshiike K, Kanda T (1999) Common neutralization epitope in minor capsid protein L2 of human papillomavirus types 16 and 6. J Virol 73:6188–6190PubMedGoogle Scholar
  43. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ et al (2008) Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 14:169–177CrossRefPubMedGoogle Scholar
  44. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW et al (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361:1838–1847CrossRefPubMedGoogle Scholar
  45. Kondo K, Ochi H, Matsumoto T, Yoshikawa H, Kanda T (2008) Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes. J Med Virol 80:841–846CrossRefPubMedGoogle Scholar
  46. Kwak K, Yemelyanova A, Roden RB (2010) Prevention of cancer by prophylactic human papillomavirus vaccines. Curr Opin Immunol 23:244–251CrossRefPubMedGoogle Scholar
  47. Lehtinen M, Paavonen J, Wheeler CM, Jaisamrarn U, Garland SM, Castellsague X, Skinner SR, Apter D, Naud P, Salmeron J et al (2012) Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol 13:89–99CrossRefPubMedGoogle Scholar
  48. Li M, Cripe TP, Estes PA, Lyon MK, Rose RC, Garcea RL (1997) Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli: characterization of protein domains involved in DNA binding and capsid assembly. J Virol 71:2988–2995PubMedGoogle Scholar
  49. Lin K, Roosinovich E, Ma B, Hung CF, Wu TC (2010) Therapeutic HPV DNA vaccines. Immunol Res 47:86–112CrossRefPubMedGoogle Scholar
  50. Lowy DR, Schiller JT (2012) Reducing HPV-associated cancer globally. Cancer Prev Res (Phila) 5:18–23CrossRefGoogle Scholar
  51. Maciag PC, Radulovic S, Rothman J (2009) The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27:3975–3983CrossRefPubMedGoogle Scholar
  52. Matijevic M, Hedley ML, Urban RG, Chicz RM, Lajoie C, Luby TM (2011) Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol 270:62–69CrossRefPubMedGoogle Scholar
  53. Merck (2011) Phase III clinical trial: broad spectrum HPV (Human Papillomavirus) vaccine study in 16-to 26-year-old women (V503-001 AM2)Google Scholar
  54. Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J (2000) A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 6:3406–3416PubMedGoogle Scholar
  55. NCI (2012a) A Phase I efficacy and safety study of HPV16-specific therapeutic DNA-vaccinia vaccination in combination with topical imiquimod, in patients with HPV16+ high grade cervical dysplasia (CIN3). http://www.cancer.gov/clinicaltrials/search/view?cdrid=617261&version=HealthProfessional&protocolsearchid=10105493
  56. NCI (2012b) Phase II study of live-attenuated listeria monocytogenes cancer vaccine ADXS11-001 in patients with persistent or recurrent squamous cell or non-squamous cell carcinoma of the cervix. http://cancer.gov/clinicaltrials/search/view?cdrid=691288&version=healthprofessional
  57. NCI (2012c) A pilot study of pnGVL4a-CRT/E7 (Detox) for the treatment of patients with HPV16+ cervical intraepithelial neoplasia 2/3 (CIN2/3). http://clinicaltrials.gov/ct2/show/NCT00988559?term=trimble&rank=1
  58. NCI (2012d) A randomized, single blind, placebo controlled phase 2 study to assess the safety of ADXS11-001 for the treatment of cervical intraepithelial neoplasia grade 2/3. http://clinicaltrials.gov/ct2/show/NCT01116245
  59. Nurkkala M, Wassen L, Nordstrom I, Gustavsson I, Slavica L, Josefsson A, Eriksson K (2010) Conjugation of HPV16 E7 to cholera toxin enhances the HPV-specific T-cell recall responses to pulsed dendritic cells in vitro in women with cervical dysplasia. Vaccine 28:5828–5836CrossRefPubMedGoogle Scholar
  60. Pastrana DV, Gambhira R, Buck CB, Pang YY, Thompson CD, Culp TD, Christensen ND, Lowy DR, Schiller JT, Roden RB (2005) Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2. Virology 337:365–372CrossRefPubMedGoogle Scholar
  61. Qin Y, Wang XH, Cui HL, Cheung YK, Hu MH, Zhu SG, Xie Y (2005) Human papillomavirus type 16 E7 peptide(38–61) linked with an immunoglobulin G fragment provides protective immunity in mice. Gynecol Oncol 96:475–483CrossRefPubMedGoogle Scholar
  62. Radulovic S, Brankovic-Magic M, Malisic E, Jankovic R, Dobricic J, Plesinac-Karapandzic V, Maciag PC, Rothman J (2009) Therapeutic cancer vaccines in cervical cancer: phase I study of Lovaxin-C. J Buon 14(Suppl 1):S165–S168PubMedGoogle Scholar
  63. Roden R, Wu TC (2006) How will HPV vaccines affect cervical cancer? Nat Rev Cancer 6:753–763CrossRefPubMedGoogle Scholar
  64. Roden RB, Yutzy WHt, Fallon R, Inglis S, Lowy DR, Schiller JT (2000) Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology 270:254–257Google Scholar
  65. Roman LD, Wilczynski S, Muderspach LI, Burnett AF, O’Meara A, Brinkman JA, Kast WM, Facio G, Felix JC, Aldana M et al (2007) A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecol Oncol 106:558–566CrossRefPubMedGoogle Scholar
  66. Romanowski B, Schwarz TF, Ferguson LM, Peters K, Dionne M, Schulze K, Ramjattan B, Hillemanns P, Catteau G, Dobbelaere K et al (2011) Immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose schedule compared to the licensed 3-dose schedule: Results from a randomized study. Hum Vaccin 7:1374–1386CrossRefPubMedGoogle Scholar
  67. Rose RC, White WI, Li M, Suzich JA, Lane C, Garcea RL (1998) Human papillomavirus type 11 recombinant L1 capsomeres induce virus-neutralizing antibodies. J Virol 72:6151–6154PubMedGoogle Scholar
  68. Santin AD, Bellone S, Roman JJ, Burnett A, Cannon MJ, Pecorelli S (2005) Therapeutic vaccines for cervical cancer: dendritic cell-based immunotherapy. Curr Pharm Des 11:3485–3500CrossRefPubMedGoogle Scholar
  69. Schellenbacher C, Roden R, Kirnbauer R (2009) Chimeric L1–L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J Virol 83:10085–10095CrossRefPubMedGoogle Scholar
  70. Sewell DA, Shahabi V, Gunn GR 3rd, Pan ZK, Dominiecki ME, Paterson Y (2004) Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res 64:8821–8825CrossRefPubMedGoogle Scholar
  71. Sharma RK, Elpek KG, Yolcu ES, Schabowsky RH, Zhao H, Bandura-Morgan L, Shirwan H (2009) Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4–1BB ligand eradicates established tumors. Cancer Res 69:4319–4326CrossRefPubMedGoogle Scholar
  72. Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA, Muderspach LI, Cole GA, Crowley-Nowick PA (2003) Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol 188:916–926CrossRefPubMedGoogle Scholar
  73. Simard EP, Ward EM, Siegel R, Jemal A (2012) Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin. doi: 10.3322/caac.20141 PubMedGoogle Scholar
  74. Souders NC, Sewell DA, Pan ZK, Hussain SF, Rodriguez A, Wallecha A, Paterson Y (2007) Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun 7:2–14PubMedGoogle Scholar
  75. Trimble CL, Frazer IH (2009) Development of therapeutic HPV vaccines. Lancet Oncol 10:975–980CrossRefPubMedGoogle Scholar
  76. Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC (2009) A phase I trial of a human papillomavirus DNA vaccine for HPV16 + cervical intraepithelial neoplasia 2/3. Clin Cancer Res 15:361–367CrossRefPubMedGoogle Scholar
  77. Tseng CW, Hung CF, Alvarez RD, Trimble C, Huh WK, Kim D, Chuang CM, Lin CT, Tsai YC, He L et al (2008) Pretreatment with cisplatin enhances E7-specific CD8 + T-Cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14:3185–3192CrossRefPubMedGoogle Scholar
  78. Tseng CW, Trimble C, Zeng Q, Monie A, Alvarez RD, Huh WK, Hoory T, Wang MC, Hung CF, Wu TC (2009) Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts. Cancer Immunol Immunother 58:737–748CrossRefPubMedGoogle Scholar
  79. Tumban E, Peabody J, Peabody DS, Chackerian B (2011) A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PLoS One 6:e23310Google Scholar
  80. Van Doorslaer K, Reimers LL, Studentsov YY, Einstein MH, Burk RD (2009) Serological response to an HPV16 E7 based therapeutic vaccine in women with high-grade cervical dysplasia. Gynecol Oncol 116(2):208–212CrossRefPubMedGoogle Scholar
  81. Wang X, Santin AD, Bellone S, Gupta S, Nakagawa M (2009) A novel CD4 T-cell epitope described from one of the cervical cancer patients vaccinated with HPV 16 or 18 E7-pulsed dendritic cells. Cancer Immunol Immunother 58:301–308CrossRefPubMedGoogle Scholar
  82. Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J et al (2008) Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 14:178–187CrossRefPubMedGoogle Scholar
  83. Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, Stynenbosch LF, Vloon AP, Ramwadhdoebe TH, Piersma SJ et al (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci U S A 107:11895–11899Google Scholar
  84. Wheeler CM, Castellsague X, Garland SM, Szarewski A, Paavonen J, Naud P, Salmeron J, Chow SN, Apter D, Kitchener H et al (2012) Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol 13:100–110CrossRefPubMedGoogle Scholar
  85. Wu CY, Monie A, Pang X, Hung CF, Wu TC (2010) Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation. J Biomed Sci 17:88CrossRefPubMedGoogle Scholar
  86. Yan W, Chen WC, Liu Z, Huang L (2010) Bryostatin-I: A dendritic cell stimulator for chemokines induction and a promising adjuvant for a peptide based cancer vaccine. Cytokine 52:238–244CrossRefPubMedGoogle Scholar
  87. Zhang YQ, Tsai YC, Monie A, Hung CF, Wu TC (2010) Carrageenan as an adjuvant to enhance peptide-based vaccine potency. Vaccine 28:5212–5219CrossRefPubMedGoogle Scholar
  88. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350CrossRefPubMedGoogle Scholar
  89. Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, van der Burg SH, Melief CJ (2002) Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 169:350–358PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nam Phuong Tran
    • 1
  • Chien-Fu Hung
    • 1
    • 2
  • Richard Roden
    • 1
    • 2
    • 3
  • T.-C. Wu
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of PathologyThe Johns Hopkins School of MedicineBaltimoreUSA
  2. 2.Departments of OncologyThe Johns Hopkins School of MedicineBaltimoreUSA
  3. 3.Departments of Obstetrics and GynecologyThe Johns Hopkins School of MedicineBaltimoreUSA
  4. 4.Department Molecular Microbiology and ImmunologyThe Johns Hopkins Medical InsitutionsBaltimoreUSA

Personalised recommendations