The Oncogenic Role of Hepatitis C Virus

  • Kazuhiko Koike
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 193)


Persistent infection with hepatitis C virus (HCV) is a major risk toward development of hepatocellular carcinoma (HCC). However, it remains controversial in the pathogenesis of HCC associated with HCV whether the virus plays a direct or an indirect role. The observation that chronic hepatitis C patients with sustained high levels of serum alanine aminotransferase are prone to develop HCC suggests the significance of inflammation in hepatocarcinogenesis in hepatitis C. However, the rare development of HCC in patients with autoimmune hepatitis, which is accompanied by robust inflammation, even after the progress into cirrhosis, implies a possibility of the direct role of HCV in HCC development. What is the role of HCV, a simple plus-stranded RNA virus, whose genome is never integrated into the host genome, in hepatocarcinogenesis? The studies using transgenic mouse and cultured cell models, in which the HCV proteins are expressed, indicate the direct pathogenicity of HCV, including oncogenic activities. In particular, the core protein of HCV induces overproduction of oxidative stress by impairing the mitochondrial electron transfer system, through insulting the function of molecular chaperon, prohibitin. HCV also modulates the intracellular signaling pathways including mitogen-activated protein kinase, leading to the acquisition of growth advantage by hepatocytes. In addition, HCV induces disorders in lipid and glucose metabolisms, thereby accelerating the progression of liver fibrosis and HCC development. These results would provide a clue for further understanding of the role of HCV in pathogenesis of persistent HCV infection including hepatocarcinogenesis.


Hepatitis C Hepatocellular carcinoma Core protein Oxidative stress Lipid metabolism Insulin resistance 


  1. Alonzi T, Agrati C, Costabile B, Cicchini C, Amicone L, Cavallari C, Rocca CD, Folgori A, Fipaldini C, Poccia F, Monica NL, Tripodi M (2004) Steatosis and intrahepatic lymphocyte recruitment in hepatitis C virus transgenic mice. J Gen Virol 85:1509–1520PubMedCrossRefGoogle Scholar
  2. Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P, Lavergne JP et al (2006) Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281:22236–22247PubMedCrossRefGoogle Scholar
  3. Diamond DL, Jacobs JM, Paeper B, Proll SC, Gritsenko MA, Carithers RL Jr et al (2007) Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatology 46:649–657PubMedCrossRefGoogle Scholar
  4. Farinati F, Cardin R, De Maria N, Della Libera G, Marafin C, Lecis E, Burra P, Floreani A, Cecchetto A, Naccarato R (1995) Iron storage, lipid peroxidation and glutathione turnover in chronic anti-HCV positive hepatitis. J Hepatol 22:449–456PubMedCrossRefGoogle Scholar
  5. Frelin L, Brenndörfer ED, Ahlén G, Weiland M, Hultgren C, Alheim M, Glaumann H, Rozell B, Milich DR, Bode JG, Sällberg M (2006) The hepatitis C virus and immune evasion: non-structural 3/4A transgenic mice are resistant to lethal tumour necrosis factor alpha mediated liver disease. Gut 55:1475–1483PubMedCrossRefGoogle Scholar
  6. Fujita N, Sugimoto R, Ma N, Tanaka H, Iwasa M, Kobayashi Y, Kawanishi S, Watanabe S, Kaito M, Takei Y (2008) Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J Viral Hepat 15:498–507PubMedCrossRefGoogle Scholar
  7. Honda A, Arai Y, Hirota N, Sato T, Ikegaki J, Koizumi T, Hatano M, Kohara M, Moriyama T, Imawari M, Shimotohno K, Tokuhisa T (1999) Hepatitis C virus structural proteins induce liver cell injury in transgenic mice. J Med Virol 59:281–289PubMedCrossRefGoogle Scholar
  8. Houghton M, Weiner A, Han J, Kuo G, Choo QL (1991) Molecular biology of hepatitis C viruses. Implications for diagnosis, development and control of viral diseases. Hepatology 14:381–388PubMedCrossRefGoogle Scholar
  9. Ikeda K, Saitoh S, Suzuki Y, Kobayashi M, Tsubota A, Koida I et al (1998) Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: a prospective observation of 2215 patients. J Hepatol 28:930–938PubMedCrossRefGoogle Scholar
  10. Kato J, Kobune M, Nakamura T, Kuroiwa G, Takada K, Takimoto R, Sato Y, Fujikawa K, Takahashi M, Takayama T, Ikeda T, Niitsu Y (2001) Normalization of elevated hepatic 8-hydroxy-2’-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res 61:8697–8702PubMedGoogle Scholar
  11. Kim KH, Hong SP, Kim K, Park MJ, Kim KJ, Cheong J (2007) HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARgamma. Biochem Biophys Res Commun 55:883–888CrossRefGoogle Scholar
  12. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedCrossRefGoogle Scholar
  13. Kiyosawa K, Sodeyama T, Tanaka E, Gibo Y, Yoshizawa K, Nakano Y et al (1990) Interrelationship of blood transfusion, non-A, non-B hepatitis and hepatocellular carcinoma: analysis by detection of antibody to hepatitis C virus. Hepatology 12:671–675PubMedCrossRefGoogle Scholar
  14. Ko KS, Tomasi ML, Iglesias-Ara A, French BA, French SW, Ramani K, Lozano JJ, Oh P, He L, Stiles BL, Li TW, Yang H, Martínez-Chantar ML, Mato JM, Lu SC (2010) Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology 52:2096–2108PubMedCrossRefGoogle Scholar
  15. Koike K (2005) Molecular basis of hepatitis C virus-associated hepatocarcinogenesis: lessons from animal model studies. Clin Gastroenterol Hepatol 3:S132–S135PubMedCrossRefGoogle Scholar
  16. Koike K, Moriya K, Ishibashi K, Matsuura Y, Suzuki T, Saito I et al (1995) Expression of hepatitis C virus envelope proteins in transgenic mice. J Gen Virol 76:3031–3038PubMedCrossRefGoogle Scholar
  17. Koike K, Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K et al (1997) Sialadenitis resembling Sjögren’s syndrome in mice transgenic for hepatitis C virus envelope genes. Proc Natl Acad Sci USA 94:233–236PubMedCrossRefGoogle Scholar
  18. Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA (2005) Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280:37481–37488PubMedCrossRefGoogle Scholar
  19. Kudo Y, Tanaka Y, Tateishi K, Yamamoto K, Yamamoto S, Mohri D, Isomura Y, Seto M, Nakagawa H, Asaoka Y, Tada M, Ohta M, Ijichi H, Hirata Y, Otsuka M, Ikenoue T, Maeda S, Shiina S, Yoshida H, Nakajima O, Kanai F, Omata M, Koike K (2011) Altered composition of fatty acids exacerbates hepatotumorigenesis during activation of the phosphatidylinositol 3-kinase pathway. J Hepatol 55:1400–1408PubMedCrossRefGoogle Scholar
  20. Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y et al (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122:352–365PubMedCrossRefGoogle Scholar
  21. Machida K, Cheng KT, Lai CK, Jeng KS, Sung VM, Lai MM (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80:7199–7207PubMedCrossRefGoogle Scholar
  22. Majumder M, Ghosh AK, Steele R, Zhou XY, Phillips NJ, Ray R, Ray RB (2002) Hepatitis C virus NS5A protein impairs TNF-mediated hepatic apoptosis, but not by an anti-FAS antibody, in transgenic mice. Virology 294:94–105PubMedCrossRefGoogle Scholar
  23. Mishra S, Murphy LC, Nyomba BL, Murphy LJ (2005) Prohibitin: a potential target for new therapeutics. Trends Mol Med 11:192–197PubMedCrossRefGoogle Scholar
  24. Miyamoto H, Moriishi K, Moriya K, Murata S, Tanaka K, Suzuki T et al (2007) Hepatitis C virus core protein induces insulin resistance through a PA28γ-dependent pathway. J Virol 81:1727–1735PubMedCrossRefGoogle Scholar
  25. Miyoshi H, Fujie H, Shintani Y, Tsutsumi T, Shinzawa S, Makuuchi M, Kokudo N, Matsuura Y, Suzuki T, Miyamura T, Moriya K, Koike K (2005) Hepatitis C virus core protein exerts an inhibitory effect on suppressor of cytokine signaling (SOCS)-1 gene expression. J Hepatol 43:757–763PubMedCrossRefGoogle Scholar
  26. Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5:453–463PubMedCrossRefGoogle Scholar
  27. Moriishi K, Okabayashi T, Nakai K, Moriya K, Koike K, Murata S et al (2003) Proteasome activator PA28 gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 77:10237–10249PubMedCrossRefGoogle Scholar
  28. Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y, Abe T et al (2007) Critical role of PA28g in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA 104:1661–1666PubMedCrossRefGoogle Scholar
  29. Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y et al (1997) Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78:1527–1531PubMedGoogle Scholar
  30. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Matsuura Y et al (1998) Hepatitis C virus core protein induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1068PubMedCrossRefGoogle Scholar
  31. Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H et al (2001a) Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61:4365–4370PubMedGoogle Scholar
  32. Moriya K, Todoroki T, Tsutsumi T, Fujie H, Shintani Y, Miyoshi H et al (2001b) Increase in the concentration of carbon 18 monounsaturated fatty acids in the liver with hepatitis C: analysis in transgenic mice and humans. Biophys Biochem Res Commun 281:1207–1212CrossRefGoogle Scholar
  33. Moriya K, Miyoshi H, Shinzawa S, Tsutsumi T, Fujie H, Goto K, Shintani Y, Yotsuyanagi H, Koike K (2010) Hepatitis C virus core protein compromises iron-induced activation of antioxidants in mice and HepG2 cells. J Med Virol 82:776–792PubMedCrossRefGoogle Scholar
  34. Naas T, Ghorbani M, Alvarez-Maya I, Lapner M, Kothary R, De Repentigny Y et al (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86:2185–2196PubMedCrossRefGoogle Scholar
  35. Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW et al (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444–2451PubMedCrossRefGoogle Scholar
  36. Nishina S, Hino K, Korenaga M, Vecchi C, Pietrangelo A, Mizukami Y, Furutani T, Sakai A, Okuda M, Hidaka I, Okita K, Sakaida I (2008) Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology 134:226–238PubMedCrossRefGoogle Scholar
  37. Pasquinelli C, Shoenberger JM, Chung J et al (1997) Hepatitis C virus core and E2 protein expression in transgenic mice. Hepatology 25:719–727PubMedCrossRefGoogle Scholar
  38. Perlemuter G, Sabile A, Letteron P, Vona G, Topilco A, Koike K et al (2002) Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J 16:185–194PubMedCrossRefGoogle Scholar
  39. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45:529–538PubMedCrossRefGoogle Scholar
  40. Piccoli C, Scrima R, Quarato G, D’Aprile A, Ripoli M, Lecce L et al (2007) Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress. Hepatology 46:58–65PubMedCrossRefGoogle Scholar
  41. Powell EE, Jonsson JR, Clouston AD (2005) Steatosis: co-factor in other liver diseases. Hepatology 42:5–13PubMedCrossRefGoogle Scholar
  42. Saito I, Miyamura T, Ohbayashi A, Harada H, Katayama T, Kikuchi S et al (1990) Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci USA 87:6547–6549PubMedCrossRefGoogle Scholar
  43. Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Kimura S, Moriya K et al (2004) Hepatitis C virus and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 126:840–848PubMedCrossRefGoogle Scholar
  44. Shirakura M, Murakami K, Ichimura T, Suzuki R, Shimoji T, Fukuda K et al (2007) E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 81:1174–1185PubMedCrossRefGoogle Scholar
  45. Suzuki R, Sakamoto S, Tsutsumi T, Rikimaru A, Tanaka K, Shimoike T et al (2005) Molecular determinants for subcellular localization of hepatitis C virus core protein. J Virol 79:1271–1281PubMedCrossRefGoogle Scholar
  46. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046PubMedCrossRefGoogle Scholar
  47. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R et al (2002) Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA 99:15669–15674PubMedCrossRefGoogle Scholar
  48. Taguwa S, Kambara H, Fujita N, Noda T, Yoshimori T, Koike K, Moriishi K, Matsuura Y (2011) Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J Virol 85:13185–13194PubMedCrossRefGoogle Scholar
  49. Theiss AL, Idell RD, Srinivasan S, Klapproth JM, Jones DP, Merlin D et al (2007) Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J 21:197–206PubMedCrossRefGoogle Scholar
  50. Tsutsumi T, Suzuki T, Moriya K, Yotsuyanagi H, Shintani Y, Fujie H et al (2002) Intrahepatic cytokine expression and AP-1 activation in mice transgenic for hepatitis C virus core protein. Virology 304:415–424PubMedCrossRefGoogle Scholar
  51. Tsutsumi T, Suzuki T, Moriya K, Shintani Y, Fujie H, Miyoshi H et al (2003) Hepatitis C virus core protein activates ERK and p38 MAPK in cooperation with ethanol in transgenic mice. Hepatology 38:820–828PubMedGoogle Scholar
  52. Tsutsumi T, Matsuda M, Aizaki H, Moriya K, Miyoshi H, Fujie H, Shintani Y, Yotsuyanagi H, Miyamura T, Suzuki T, Koike K (2009) Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperone, prohibitin, in cells expressing hepatitis C virus core protein. Hepatology 50:378–386PubMedCrossRefGoogle Scholar
  53. Wakita T, Taya C, Katsume A et al (1998) Efficient conditional transgene expression in hepatitis C virus cDNA transgenic mice mediated by the Cre/loxP system. J Biol Chem 273:9001–9006PubMedCrossRefGoogle Scholar
  54. Waris G, Felmlee DJ, Negro F, Siddiqui A (2007) Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress. J Virol 81:8122–8130PubMedCrossRefGoogle Scholar
  55. Yotsuyanagi H, Shintani Y, Moriya K, Fujie H, Tsutsumi T, Kato T et al (2000) Virological analysis of non-B, non-C hepatocellular carcinoma in Japan: frequent involvement of hepatitis B virus. J Infect Dis 181:1920–1928PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of GastroenterologyGraduate School of Medicine, The University of TokyoTokyoJapan

Personalised recommendations