System Fi

A Higher-Order Polymorphic λ-Calculus with Erasable Term-Indices
  • Ki Yung Ahn
  • Tim Sheard
  • Marcelo Fiore
  • Andrew M. Pitts
Conference paper

DOI: 10.1007/978-3-642-38946-7_4

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7941)
Cite this paper as:
Ahn K.Y., Sheard T., Fiore M., Pitts A.M. (2013) System Fi. In: Hasegawa M. (eds) Typed Lambda Calculi and Applications. TLCA 2013. Lecture Notes in Computer Science, vol 7941. Springer, Berlin, Heidelberg

Abstract

We introduce a foundational lambda calculus, System Fi, for studying programming languages with term-indexed datatypes – higher-kinded datatypes whose indices range over data such as natural numbers or lists. System Fi is an extension of System Fω that introduces the minimal features needed to support term-indexing. We show that System Fi provides a theory for analysing programs with term-indexed types and also argue that it constitutes a basis for the design of logically-sound light-weight dependent programming languages. We establish erasure properties of Fi-types that capture the idea that term-indices are discardable in that they are irrelevant for computation. Index erasure projects typing in System Fi to typing in System Fω. So, System Fi inherits strong normalization and logical consistency from System Fω.

Keywords

term-indexed data types generalized algebraic data types higher-order polymorphism type-constructor polymorphism higher- kinded types impredicative encoding strong normalization logical consistency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ki Yung Ahn
    • 1
  • Tim Sheard
    • 1
  • Marcelo Fiore
    • 2
  • Andrew M. Pitts
    • 2
  1. 1.Portland State UniversityPortlandUSA
  2. 2.University of CambridgeCambridgeUK

Personalised recommendations