Advertisement

Transmission Electron Microscopy of 1D-Nanostructures

  • Teresa Ben
  • Rabie Fath Allah
  • David L. Sales
  • David González
  • Sergio I. Molina
Chapter

Abstract

In this chapter, we review results obtained by conventional and advanced electron microscopy related techniques of complex 1-D nanostructures such as spontaneous core–shell AlxGa 1−x N/GaN (0001) nanowires, ZnO/Si(111) nanorods, ZnO/CdTe (111) nanowires, and InAsxP1−x/InP(001) quantum wires.

Keywords

Seed Layer Chemical Bath Deposition Electron Energy Loss Spectrum Conventional Transmission Electron Microscopy CdTe Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support from Spanish projects (MAT2010-15206, TEC2011-29120-C05-03 and CONSOLIDER INGENIO 2010 CSD2009-00013), Junta de Andalutia (P09-TEP-5403, PAI research groups TEP-120 and TEP-946), and the European Science Foundation (COST Action MP0805) are gratefully acknowledged. TEM measurements were carried out at DME-SCCYT-UCA. The authors would like to thank their collaborators and coauthors of the articles reviewed here (O. Martinez, J.L. Plaza, E. Dieguez, J.G. Lozano, J. Mass, D. Byrne, E. McGlyn, B. Twamley, M. O. Henry, P.L. Galindo, J. Pizarro, D. Fuster, L. González, Y. González, S. Kret, R. Songmuang, M. H. Gass, P. J. Goodhew, M. Varela, S. J. Pennycook). Authors belong to the Institute of Electron Microscopy and Materials, which is in interim stage of creation.

References

  1. 1.
    Manasreh O (2012) Introduction to nanomaterials and devices. Wiley, New YorkGoogle Scholar
  2. 2.
    Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421(6920):241–245CrossRefGoogle Scholar
  3. 3.
    Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nanowire dye- sensitized solar cells. Nat Mater 4(6):455–459CrossRefGoogle Scholar
  4. 4.
    Levy-Clement C, Tena-Zaera R, Ryan MA, Katty A, Hodes G (2005) CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv Mater 17(12):1512–1525CrossRefGoogle Scholar
  5. 5.
    Tomioka K, Motohisa J, Hara S, Hiruma K, Fukui T (2010) GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett 10(5):1639–1644CrossRefGoogle Scholar
  6. 6.
    Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167CrossRefGoogle Scholar
  7. 7.
    Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771):242–246CrossRefGoogle Scholar
  8. 8.
    Wang X, Song J, Liu J, Wang ZL (2007) Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821):102–105CrossRefGoogle Scholar
  9. 9.
    Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790):1100–1104CrossRefGoogle Scholar
  10. 10.
    Wu YY, Yang PD (2001) Direct observation of vapor–liquid-solid nanowire growth. J Am Chem Soc 123(13):3165–3166CrossRefGoogle Scholar
  11. 11.
    Choi HJ (2012) Vapor–liquid-solid growth of semiconductor nanowires. Springer, Berlin/HiedelbergCrossRefGoogle Scholar
  12. 12.
    Utama MIB, Zhang J, Chen R, Xu X, Li D, Sun H, Xiong Q (2012) Synthesis and optical properties of II–VI1D nanostructures. Nanoscale 4(5):1422–1435CrossRefGoogle Scholar
  13. 13.
    Calarco R, Meijers RJ, Debnath RK, Stoica T, Sutter E, Luth H (2007) Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett 7(8):2248–2251CrossRefGoogle Scholar
  14. 14.
    Byrne D, McGlynn E, Kumar K, Biswas M, Henry MO, Hughes G (2010) A study of drop-coated and chemical bath-deposited buffer layers for vapor phase deposition of large area, aligned, zinc oxide nanorod arrays. Cryst Growth Des 10(5):2400–2408CrossRefGoogle Scholar
  15. 15.
    González L, Garcia JM, Garcia R, Briones F, Martinez-Pastor J, Ballesteros C (2000) Influence of buffer-layer surface morphology on the self-organized growth of InAs on InP(001) nanostructures. Appl Phys Lett 76(9):1104–1106CrossRefGoogle Scholar
  16. 16.
    Ding Y, Wang ZL (2009) Structures of planar defects in ZnO nanobelts and nanowires. Micron 40(3):335–342CrossRefGoogle Scholar
  17. 17.
    Bougerol C, Songmuang R, Camacho D, Niquet YM, Mata R, Cros A, Daudin B (2009) The structural properties of GaN insertions in GaN/AlN nanocolumn heterostructures. Nanotechnology 20(29):295706–295710CrossRefGoogle Scholar
  18. 18.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872):617–620CrossRefGoogle Scholar
  19. 19.
    Jarausch K, Thomas P, Leonard DN, Twesten R, Booth CR (2009) Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography. Ultramicroscopy 109(4):326–337CrossRefGoogle Scholar
  20. 20.
    Du GH, Yuan ZY, Van Tendeloo G (2005) Transmission electron microscopy and electron energy-loss spectroscopy analysis of manganese oxide nanowires. Appl Phys Lett 86(6):063113–063115CrossRefGoogle Scholar
  21. 21.
    Urban K, Kabius B, Haider M, Rose H (1999) A way to higher resolution: spherical- aberration correction in a 200 kV transmission electron microscope. J Electron Microsc 48(6):821–826CrossRefGoogle Scholar
  22. 22.
    Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-angstrom electron beams. Ultramicroscopy 78(1–4):1–11CrossRefGoogle Scholar
  23. 23.
    Rose H (1994) Correction of aberrations, a promising means for improving the spatial and energy resolution of energy-filtering electron-microcopes. Ultramicroscopy 56(1–3):11–25CrossRefGoogle Scholar
  24. 24.
    Haider M, Rose H, Uhlemann S, Schwan E, Kabius B, Urban K (1998) A spherical- aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1):53–60CrossRefGoogle Scholar
  25. 25.
    O’Keefe MA (2008) Seeing atoms with aberration-corrected sub-Angstrom electron microscopy. Ultramicroscopy 108(3):196–209CrossRefGoogle Scholar
  26. 26.
    Muller DA (2009) Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8(4):263–270CrossRefGoogle Scholar
  27. 27.
    Pennycook SJ, Varela M, Hetherington CJD, Kirkland AI (2006) Materials advances through aberration-corrected electron microscopy. MRS Bull 31(1):3643CrossRefGoogle Scholar
  28. 28.
    Varela M, Findlay SD, Lupini AR, Christen HM, Borisevich AY, Dellby N et al (2004) Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92(9):095502–095505CrossRefGoogle Scholar
  29. 29.
    Galluppi M, Frova A, Capizzi M, Boscherini F, Frigeri P, Franchi S, Passaseo A (2001) Atomic equilibrium concentrations in (InGa)As quantum dots. Appl Phys Lett 78(20):3121–3123CrossRefGoogle Scholar
  30. 30.
    Shumway J, Williamson AJ, Zunger A, Passaseo A, DeGiorgi M, Cingolani R, Catalano M, Crozier P (2001) Electronic structure consequences of In/Ga composition variations in self-assembled InxGa1−xAs/GaAs alloy quantum dots. Phys Rev B 64(12):125302–125313CrossRefGoogle Scholar
  31. 31.
    Eee H, Nellist PD, Lozano-Perez S, Ozkaya D (2010) Towards quantitative analysis of core-shell catalyst nano-particles by aberration corrected high angle annular dark field STEM and EDX. J Phys Conf Ser 241(1):012067–012070CrossRefGoogle Scholar
  32. 32.
    Allen LJ, D’Alfonso AJ, Findlay SD, LeBeau JM, Lugg NR, Stemmer S (2010) Elemental mapping in scanning transmission electron microscopy. J Phys Conf Ser 241(1):012061–012067CrossRefGoogle Scholar
  33. 33.
    Carlino E, Modesti S, Furlanetto D, Piccin M, Rubini S, Franciosi A (2003) Atomic resolution composition analysis by scanning transmission electron microscopy high-angle annular dark-field imaging. Appl Phys Lett 83(4):662–664CrossRefGoogle Scholar
  34. 34.
    Zhi D, Midgley PA, Dunin-Borkowski RE, Joyce BA, Pashley DW, Bleloch AL, Goodhew PJ (2005) Growth and overgrowth of Ge/Si quantum dots: an observation by atomic resolution HAADF-STEM imaging. In: Tsybeskov L, Lockwood DJ, Delerue C, Ichikawa M (eds) Group-IV semiconductor nanostructures 2005. MRS Society, Warrandale, pp 105–110Google Scholar
  35. 35.
    Molina SI, Sales DL, Galindo PL, Fuster D, González Y, Alen B, González L, Varela M, Pennycook SJ (2009) Column-by-column compositional mapping by Z- contrast imaging. Ultramicroscopy 109(2):172–176CrossRefGoogle Scholar
  36. 36.
    Hernandez-Maldonado D, Herrera M, Alonso-González P, González Y, González L, Gazquez J et al (2011) Compositional analysis with atomic column spatial resolution by 5th-order aberration-corrected scanning transmission electron microscopy. Microsc Microanal 17(4):578–581CrossRefGoogle Scholar
  37. 37.
    Egerton RF (1986) Electron energy-loss spectroscopy in the electron microscope. Plenum Press, New YorkGoogle Scholar
  38. 38.
    Galindo PL, Kret S, Sanchez AM, Laval JY, Yanez A, Pizarro J, Guerrero E, Ben T, Molina SI (2007) The peak pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107(12):1186–1193CrossRefGoogle Scholar
  39. 39.
    Gatti R, UhHk F, Montalenti F (2008) Intermixing in heteroepitaxial islands: fast, self- consistent calculation of the concentration profile minimizing the elastic energy. New J Phys 10(8):083039–083049CrossRefGoogle Scholar
  40. 40.
    Liu GR, Jerry SSQ (2002) A finite element study of the stress and strain fields of InAs quantum dots embedded in GaAs. Semicond Sci Technol 17(6):630–643CrossRefGoogle Scholar
  41. 41.
    Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301–041403CrossRefGoogle Scholar
  42. 42.
    Ellmer K, Klein A, Rech B (2008) Transparent conductive zinc oxide: basics and applications in thin film solar cells. Springer, LondonCrossRefGoogle Scholar
  43. 43.
    Bagnall DM, Chen YF, Zhu Z, Yao T, Koyama S, Shen MY, Goto T (1997) Optically pumped lasing of ZnO at room temperature. Appl Phys Lett 70(17):2230–2232CrossRefGoogle Scholar
  44. 44.
    Lao CS, Liu J, Gao P, Zhang L, Davidovic D, Tummala R, Wang ZL (2006) ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett 6(2):263–266CrossRefGoogle Scholar
  45. 45.
    Rout CS, Hari Krishna S, Vivekchand SRC, Govindaraj A, Rao CNR (2006) Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem Phys Lett 418(4–6):586–590CrossRefGoogle Scholar
  46. 46.
    Pradhan D, Kumar M, Ando Y, Leung KT (2008) One-dimensional and twodimensional ZnO nanostructured materials on a plastic substrate and their field emission properties. J Phys Chem C 112(18):7093–7096CrossRefGoogle Scholar
  47. 47.
    Li Z, Yang R, Yu M, Bai F, Li C, Wang ZL (2008) Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C 112(51):20114–20117CrossRefGoogle Scholar
  48. 48.
    Yang J, Zheng J, Zhai H, Yang X, Yang L, Liu Y, Lang J, Gao M (2010) Oriented growth of ZnO nanostructures on different substrates via a hydrothermal method. J Alloys Compd 489(1):51–55CrossRefGoogle Scholar
  49. 49.
    Lockman Z, Pet Fong Y, Wai Kian T, Ibrahim K, Razak KA (2010) Formation of selfaligned ZnO nanorods in aqueous solution. J Alloys Compd 493(1–2):699–706CrossRefGoogle Scholar
  50. 50.
    Xu S, Ding Y, Wei Y, Fang H, Shen Y, Sood AK, Polla DL, Zhong LW (2009) Patterned growth of horizontal ZnO nanowire arrays. J Am Chem Soc 131(19):6670–6671CrossRefGoogle Scholar
  51. 51.
    Yao B, Feng L, Cheng C, Loy MMT, Wang N (2010) Tailoring the luminescence emission of ZnO nanostructures by hydrothermal post-treatment in water. Appl Phys Lett 96(22):223105–223107CrossRefGoogle Scholar
  52. 52.
    Hsu YF, Xi YY, Djurisic AB, Chan WK (2008) ZnO nanorods for solar cells: hydrothermal growth versus vapor deposition. Appl Phys Lett 92(13):133507–133509CrossRefGoogle Scholar
  53. 53.
    Bosio A, Romeo N, Mazzamuto S, Canevari V (2006) Polycrystalline CdTe thin films for photovoltaic applications. Progr Cryst Growth Char Mater 52(4):247–279CrossRefGoogle Scholar
  54. 54.
    Plaza JL, Martinez O, de Dios S, Olvera J, Dieguez E (2009) New method for fabricating ZnO nanowires deposited onto CdTe substrates. J Cryst Growth 312(1):64–67CrossRefGoogle Scholar
  55. 55.
    Martinez O, Hortelano V, Jimenez J, Plaza JL, de Dios S, Olvera J et al (2011) Growth of ZnO nanowires through thermal oxidation of metallic zinc films on CdTe substrates. J Alloys Compd 509(17):5400–5407CrossRefGoogle Scholar
  56. 56.
    Ding Y, Kong XY, Wang ZL (2004) Doping and planar defects in the formation of singlecrystal ZnO nanorings. Phys Rev B 70(23):235408–235414CrossRefGoogle Scholar
  57. 57.
    Ding Y, Wang ZL (2004) Structure analysis of nanowires and nanobelts by transmission electron microscopy. J Phys Chem B 108(33):1228012291CrossRefGoogle Scholar
  58. 58.
    Martínez O, Plaza JL, Mass J, Capote B, Diéguez E, Jiménez J (2007) Luminescence of pure and doped ZnO films synthesised by thermal annealing on GaSb single crystals. Superlattices Microst 42(1–6):145–151CrossRefGoogle Scholar
  59. 59.
    Zanotti L, Zha M, Calestani D, Comini E, Sberveglieri G (2005) Growth of tin oxide nanocrystals. Cryst Res Technol 40(10–11):932–936CrossRefGoogle Scholar
  60. 60.
    Ali A, Shah NA, Aqili AKS, Maqsood A (2006) Impact of evaporation rates of Cd and Te on structural, morphological, optical, and electrical properties of CdTe thin films deposited by a two-sourced evaporation technique. Cryst Growth Des 6(9):2149–2154CrossRefGoogle Scholar
  61. 61.
    Govender K, Boyle DS, Kenway PB, O’Brien P (2004) Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J Mater Chem 14(16):2575–2591CrossRefGoogle Scholar
  62. 62.
    Byrne D, McGlynn E, Henry MO, Kumar K, Hughes G (2010) A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays. Thin Solid Films 518(16):4489–4492CrossRefGoogle Scholar
  63. 63.
    Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5(7):1231–1236CrossRefGoogle Scholar
  64. 64.
    Lide DR (1992) CRC handbook of chemistry and physics. CRC, Boca Raton, p 2560Google Scholar
  65. 65.
    Byrne D, Fath Allah R, Ben T, González Robledo D, Twamley B, Henry MO, McGlynn E (2011) Study of morphological and related properties of aligned zinc oxide nanorods grown by vapor phase transport on chemical bath deposited buffer layers. Cryst Growth Des 11(12):5378–5386CrossRefGoogle Scholar
  66. 66.
    Kim SS, Lee B-T (2004) Effects of oxygen pressure on the growth of pulsed laser deposited ZnO films on Si(001). Thin Solid Films 446(2):307–312CrossRefGoogle Scholar
  67. 67.
    Fath Allah R, Byrne D, Ben T, González D, McGlynn E, Garcia R (2012) Effect of high temperature VPT conditions on the development of aligned ZnO nanorod arrays grown by a three step catalyst-free method. J Nano Lett 3(2):1–8Google Scholar
  68. 68.
    Lim YS, Park JW, Kim MS, Kim J (2006) Effect of carbon source on the carbothermal reduction for the fabrication of ZnO nanostructure. Appl Surf Sci 253(3):1601–1605CrossRefGoogle Scholar
  69. 69.
    Xu XL, Guo CX, Qi ZM, Liu HT, Xu J, Shi CS, Chong C, Huang WH, Zhou YJ, Xu CM (2002) Annealing effect for surface morphology and luminescence of ZnO film on silicon. Chem Phys Lett 364(1–2):57–63CrossRefGoogle Scholar
  70. 70.
    Karazhanov SZ, Ravindran P, Fjellvag H, Svensson BG (2009) Electronic structure and optical properties of ZnSiO3 and Zn2SiO4. J Appl Phys 106(12):123701–123707CrossRefGoogle Scholar
  71. 71.
    DiStefano TH, Eastman DE (1971) The band edge of amorphous SiO2 by photoinjection and photoconductivity measurements. Solid State Commun 9(24):2259–2261CrossRefGoogle Scholar
  72. 72.
    Ashfold MNR, Doherty RP, Ndifor-Angwafor NG, Riley DJ, Sun Y (2007) The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 515(24):8679–8683CrossRefGoogle Scholar
  73. 73.
    Leonard RB, Searcy AW (1971) The variation of vaporization rates with orientation for basal planes of zinc oxide and cadmium sulfide. J Appl Phys 42(10):4047–4054CrossRefGoogle Scholar
  74. 74.
    Iwanaga H, Yoshiie T, Yamaguchi T, Shibata N (1979) Crystal growth and sublimation in II–VI compounds along their polar axis. J Cryst Growth 47(5–6):703–711CrossRefGoogle Scholar
  75. 75.
    Ntep JM, Barbé M, Cohen-Solal G, Bailly F, Lusson A, Triboulet R (1998) ZnO growth by chemically assisted sublimation. J Cryst Growth 184–185:1026–1030CrossRefGoogle Scholar
  76. 76.
    Su X, Zhang Z, Zhu M (2006) Melting and optical properties of ZnO nanorods. Appl Phys Lett 88(6):061913–061915CrossRefGoogle Scholar
  77. 77.
    Yan Z, Ma Y, Wang D, Wang J, Gao Z, Wang L, Yu P, Song T (2008) Impact of annealing on morphology and ferromagnetism of ZnO nanorods. Appl Phys Lett 92(8):081911–081913CrossRefGoogle Scholar
  78. 78.
    Yan Z, Zhu K, Chen W-P (2008) ZnO quasibicrystals formed by thermal annealing. Appl Phys Lett 92(24):241912–241914CrossRefGoogle Scholar
  79. 79.
    Wang N, Cai Y, Zhang RQ (2008) Growth of nanowires. Mater Sci Eng R Reports 60(1–6):1–51Google Scholar
  80. 80.
    Heo YW, Norton DP, Tien LC, Kwon Y, Kang BS, Ren F, Pearton SJ, LaRoche JR (2004) ZnO nanowire growth and devices. Mater Sci Eng R Rep 47(1–2):1–47CrossRefGoogle Scholar
  81. 81.
    Hersee SD, Sun X, Wang X (2006) The controlled growth of GaN nanowires. Nano Lett 6(8):1808–1811CrossRefGoogle Scholar
  82. 82.
    Fan HJ, Yang Y, Zacharias M (2009) ZnO-based ternary compound nanotubes and nanowires. J Mater Chem 19(7):885–900CrossRefGoogle Scholar
  83. 83.
    Fakhr A et al (2010) Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions. Nanotechnology 21(16):165601–165607CrossRefGoogle Scholar
  84. 84.
    Songmuang R, Ben T, Daudin B, González D, Monroy E (2010) Identification of III-N nanowire growth kinetics via a marker technique. Nanotechnology 21(29):295605–295608CrossRefGoogle Scholar
  85. 85.
    Hayden O, Greytak AB, Bell DC (2005) Core-Shell nanowire light-emitting diodes. Adv Mater 17(6):701–704CrossRefGoogle Scholar
  86. 86.
    Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and coremultishell nanowire heterostructures. Nature 420(69–11):57–61CrossRefGoogle Scholar
  87. 87.
    Sköld N, Karlsson LS, Larsson MW, Pistol M-E, Seifert W, Tragardh J, Samuelson L (2005) Growth and optical properties of strained GaAs-GaxIn1−xP core-shell nanowires. Nano Lett 5(10):1943–1947CrossRefGoogle Scholar
  88. 88.
    Boxberg F, Sondergaard N, Xu HQ (2010) Photovoltaics with piezoelectric core-shell nanowires. Nano Lett 10(4):1108–1112CrossRefGoogle Scholar
  89. 89.
    Qian F, Gradečak S, Li Y, Wen C-Y, Lieber CM (2005) Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5(11):2287–2291CrossRefGoogle Scholar
  90. 90.
    Choi H-J, Johnson JC, He R, Lee S-K, Kim F, Pauzauskie P, Goldberger J, Saykally RJ, Yang P (2003) Self-organized GaN quantum wire UV lasers. J Phys Chem B 107(34):8721–8725CrossRefGoogle Scholar
  91. 91.
    Li Y, Xiang J, Qian F, Gradečak S, Wu Y, Yan H, Blom DA, Lieber CM (2006) Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett 6(7):1468–1473CrossRefGoogle Scholar
  92. 92.
    Songmuang R, Landre O, Daudin B (2007) From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer. Appl Phys Lett 91(25):251902–251904CrossRefGoogle Scholar
  93. 93.
    Lim SK, Tambe MJ, Brewster MM, Gradečak S (2008) Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition. Nano Lett 8(5):1386–1392CrossRefGoogle Scholar
  94. 94.
    Shitara T, Neave JH, Joyce BA (1993) Reflection high-energy electron diffraction intensity oscillations and anisotropy on vicinal AlAs(001) during molecular-beam epitaxy. Appl Phys Lett 62(14):1658–1660CrossRefGoogle Scholar
  95. 95.
    Schubert L, Werner P, Zakharov ND, Gerth G, Kolb FM, Long L, Gosele U, Tan TY (2004) Silicon nanowhiskers grown on <111 > Si substrates by molecular-beam epitaxy. Appl Phys Lett 84(24):4968–4970CrossRefGoogle Scholar
  96. 96.
    Debnath RK, Meijers R, Richter T, Stoica T, Calarco R, Luth H (2007) Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111). Appl Phys Lett 90(12):123117–123119CrossRefGoogle Scholar
  97. 97.
    Iliopoulos E, Moustakas TD (2002) Growth kinetics of AlGaNfilms by plasma-assisted molecular-beam epitaxy. Appl Phys Lett 81(2):295–297CrossRefGoogle Scholar
  98. 98.
    Canet-Ferrer J, Munoz-Matutano G, Fuster D, Alen B, González Y, González L, Martinez-Pastor JP (2011) Localization effects on recombination dynamics in InAs/InP self-assembled quantum wires emitting at 1.5 μm. J Appl Phys 110(10):103502–103507CrossRefGoogle Scholar
  99. 99.
    Atlasov KA, Karlsson KF, Deichsel E, Rudra A, Dwir B, Kapon E (2007) Site- controlled single quantum wire integrated into a photonic-crystal membrane microcavity. Appl Phys Lett 90(15):153107–153119CrossRefGoogle Scholar
  100. 100.
    Seravalli L, Minelli M, Frigeri P, Allegri P, Avanzini V, Franchi S (2003) The effect of strain on tuning of light emission energy of InAs/InGaAs quantum-dot nanostructures. Appl Phys Lett 82(14):2341–2343CrossRefGoogle Scholar
  101. 101.
    Chuang SL (1991) Efficient band-structure calculation of strained quantum-wells. Phys Rev B 43(12):9649–9661CrossRefGoogle Scholar
  102. 102.
    Tersoff J, Teichert C, Lagally MG (1996) Self-organization in growth of quantum dot superlattices. Phys Rev Lett 76(10):1675–1678CrossRefGoogle Scholar
  103. 103.
    Alen B, Martinez-Pastor J, González L, Garcia JM, Molina SI, Ponce A, Garcia R (2002) Size-filtering effects by stacking InAs/InP (001) self-assembled quantum wires into multilayers. Phys Rev B 65(24):241301–241304CrossRefGoogle Scholar
  104. 104.
    Skolnick MS, Mowbray DJ (2004) Self-assembled semiconductor quantum dots: fundamental physics and device and applications. Ann Rev Mater Res 34:181–218CrossRefGoogle Scholar
  105. 105.
    Ryzhii V, Khmyrova I, Mitin V, Stroscio M, Willander M (2001) On the detectivity of quantum-dot infrared photodetectors. Appl Phys Lett 78(22):3523–3525CrossRefGoogle Scholar
  106. 106.
    Cui K, Robinson BJ, Thompson DA, Botton GA (2010) Stacking pattern of multilayer InAs quantum wires embedded in In0.53Ga0.47−xAlxAs matrix layers grown lattice-matched on InP substrate. J Cryst Growth 312(19):2637–2646CrossRefGoogle Scholar
  107. 107.
    Fuster D, González MU, González L, González Y, Ben T, Ponce A, Molina SI, Martinez-Pastor J (2004) Size control of InAs/InP(001) quantum wires by tailoring P/As exchange. Appl Phys Lett 85(8):1424–1426CrossRefGoogle Scholar
  108. 108.
    Fuster D, González MU, González L, González Y, Ben T, Ponce A, Molina SI (2004) Stacking of InAs/InP(001) quantum wires studied by in situ stress measurements: role of inhomogeneous stress fields. Appl Phys Lett 84(23):4723–4725CrossRefGoogle Scholar
  109. 109.
    Xie QH, Madhukar A, Chen P, Kobayashi NP (1995) Vertically self-organized InAs quantum box islands on GaAs(100). Phys Rev Lett 75(13):2542–2545CrossRefGoogle Scholar
  110. 110.
    Kret S, Ruterana P, Rosenauer A, Gerthsen D (2001) Extracting quantitative information from high resolution electron microscopy. Phys Status Solidi (b) 227(1):247–295CrossRefGoogle Scholar
  111. 111.
    Fuster D, Alén B, González L, González Y, Martínez-Pastor J, González MU, García JM (2007) Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution. Nanotechnology 18(3):035604035609CrossRefGoogle Scholar
  112. 112.
    Blunier S, Zogg H, Maissen C, Tiwari AN, Overney RM, Haefke H, Buffat PA, Kostorz G (1992) Lattice and thermal misfit dislocations in epitaxial CaF2/Si(111) andBaF2-CaF2/Si(111) structures. Phys Rev Lett 68(24):3599–3602CrossRefGoogle Scholar
  113. 113.
    Hannon JB, Shenoy VB, Schwarz KW (2006) Anomalous spiral motion of steps near dislocations on silicon surfaces. Science 313(5791):1266–1269CrossRefGoogle Scholar
  114. 114.
    Kaganer VM, Ploog KH (2001) Energies of strained vicinal surfaces and strained islands. Phys Rev B 64(20):205301–205314CrossRefGoogle Scholar
  115. 115.
    Kukta RV, Peralta A, Kouris D (2002) Elastic interaction of surface steps: effect of atomic-scale roughness. Phys Rev Lett 88(18):186102–186105CrossRefGoogle Scholar
  116. 116.
    Liu F, Tersoff J, Lagally MG (1998) Self-organization of steps in growth of strained films on vicinal substrates. Phys Rev Lett 80(6):1268–1271CrossRefGoogle Scholar
  117. 117.
    Voorhees PW (2006) Step dances on silicon. Science 313(5791):1247–1249CrossRefGoogle Scholar
  118. 118.
    Wollschläger J, Pietsch H, Klust A (1998) Competition between terrace and step nucleation: epitaxy of CaF2 on vicinal Si(111) studied by atomic force microscopy. Appl Surf Sci 130–132:29–35CrossRefGoogle Scholar
  119. 119.
    Bai LG, Tersoff J, Liu F (2004) Self-organized quantum-wire lattice via step flow growth of a short-period superlattice. Phys Rev Lett 92(22):225503–225506CrossRefGoogle Scholar
  120. 120.
    Molina SI, Sanchez AM, Beltran AM, Sales DL, Ben T, Chisholm MF et al (2007) Incorporation of sb in InAs/GaAs quantum dots. Appl Phys Lett 91(26):263105–263107CrossRefGoogle Scholar
  121. 121.
    Xu MC, Temko Y, Suzuki T, Jacobi K (2005) On the location of InAs quantum dots on GaAs(001). Surf Sci 589(1–3):91–97CrossRefGoogle Scholar
  122. 122.
    Molina SI, Varela M, Sales DL, Ben T, Pizarro J, Galindo PL, Fuster D, González Y, González L, Pennycook SJ (2007) Direct imaging of quantum wires nucleated at diatomic steps. Appl Phys Lett 91(14):143112–143114CrossRefGoogle Scholar
  123. 123.
    Molina SI, Varela M, Ben T, Sales DL, Pizarro J, Galindo PL, Fuster D, González Y, González L, Pennycook SJ (2008) A method to determine the strain and nucleation sites of stacked nano-objects. J Nanosci Nanotechnol 8(7):3422–3426CrossRefGoogle Scholar
  124. 124.
    Sales DL, Varela M, Pennycook SJ, Galindo PL, González L, González Y, Fuster D, Molina SI (2010) Morphological evolution of InAs/InP quantum wires through aberration-corrected scanning transmission electron microscopy. Nanotechnology 21(32):325706–325713CrossRefGoogle Scholar
  125. 125.
    Jesson DE, Munt TP, Lou C (2004) Critical thickness for nanostructure self-assembly during Stranski-Krastanow growth. Jpn J Appl Phys 43(10):7230–7231CrossRefGoogle Scholar
  126. 126.
    Silveira JP, Briones F (1999) In situ observation of reconstruction related surface stress during molecular beam epitaxy (MBE) growth of III–V compounds. J Cryst Growth 201–202:113–117CrossRefGoogle Scholar
  127. 127.
    Levinstein RS, Shur M (1996) Handbook series on semiconductor parameters. World Scientific, LondonCrossRefGoogle Scholar
  128. 128.
    Liu P, Zhang YW, Lu C (2003) Three-dimensional finite-element simulations of the self-organized growth of quantum dot superlattices. Phys Rev B 68(19):195314–195321CrossRefGoogle Scholar
  129. 129.
    Biasiol G, Kapon E (1999) Mechanism of self-limiting epitaxial growth on nonplanar substrates. J Cryst Growth 201–202:62–66CrossRefGoogle Scholar
  130. 130.
    Ben T, Molina SI, García R, Fuster D, González MU, González L, González Y, Kret S (2005) Quantitative measurements of the inhomogeneous strain field of stacked self-assembled InAs/InP(001) quantum wires by the Peak Finding Method. In: Cullis AG, Hutchison JL (eds) Microscopy of semiconducting materials. Springer, Berlin/Heidelberg, pp 299–302CrossRefGoogle Scholar
  131. 131.
    Ben T, Sales D, Pizarro J, Galindo P, Fuster D, González Y, González L, Varela M, Pennycook S, Molina S (2008) Experimental and simulated strain field maps in stacked quantum wires. Microsc Microanal 14(Suppl 2):344–345CrossRefGoogle Scholar
  132. 132.
    Molina SI, Ben T, Sales DL, Pizarro J, Galindo PL, Varela M, Pennycook SJ, Fuster D, González Y, González L (2006) Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites. Nanotechnology 17(22):5652–5658CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Teresa Ben
    • 1
  • Rabie Fath Allah
    • 1
  • David L. Sales
    • 1
  • David González
    • 1
  • Sergio I. Molina
    • 1
  1. 1.Departamento de Ciencia de los Materiales e I. M. y Q. I. Facultad de CienciasUniversidad de CádizPuerto RealSpain

Personalised recommendations