Pattern Matching with Variables: A Multivariate Complexity Analysis

(Extended Abstract)
  • Henning Fernau
  • Markus L. Schmid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7922)


In the context of this paper, a pattern is a string that contains variables and terminals. A pattern α matches a terminal word w if w can be obtained by uniformly substituting the variables of α by terminal words. It is a well-known fact that deciding whether a given terminal word matches a given pattern is an NP-complete problem. In this work, we consider numerous parameters of this problem and for all possible combinations of these parameters, we investigate the question whether or not the variant obtained by bounding these parameters by constants can be solved efficiently.


Parameterised Pattern Matching Function Matching NP-Completeness Membership Problem for Pattern Languages Morphisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Function matching: Algorithms, applications, and a lower bound. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 929–942. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Amir, A., Nor, I.: Generalized function matching. Journal of Discrete Algorithms 5, 514–523 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Angluin, D.: Finding patterns common to a set of strings. In: Proc. 11th Annual ACM Symposium on Theory of Computing, STOC 1979, pp. 130–141 (1979)Google Scholar
  4. 4.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Journal of Computer and System Sciences 52, 28–42 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bremer, J., Freydenberger, D.D.: Inclusion problems for patterns with a bounded number of variables. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 100–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions. International Journal of Foundations of Computer Science 14, 1007–1018 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Clifford, R., Harrow, A.W., Popa, A., Sach, B.: Generalised matching. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 295–301. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ehrenfeucht, A., Rozenberg, G.: Finding a homomorphism between two words is NP-complete. Information Processing Letters 9, 86–88 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Freydenberger, D.D., Reidenbach, D.: Bad news on decision problems for patterns. Information and Computation 208, 83–96 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic images of strings. International Journal of Foundations of Computer Science 17, 601–628 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol (2006)Google Scholar
  13. 13.
    Geilke, M., Zilles, S.: Learning relational patterns. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS, vol. 6925, pp. 84–98. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Harju, T., Karhumäki, J.: Morphisms. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, ch. 7, pp. 439–510. Springer (1997)Google Scholar
  15. 15.
    Ibarra, O., Pong, T.-C., Sohn, S.: A note on parsing pattern languages. Pattern Recognition Letters 16, 179–182 (1995)CrossRefGoogle Scholar
  16. 16.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. International Journal of Computer Mathematics 50, 147–163 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal of Computer and System Sciences 50, 53–63 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kratochvíl, J., Křivánek, M.: On the computational complexity of codes in graphs. In: Koubek, V., Janiga, L., Chytil, M.P. (eds.) MFCS 1988. LNCS, vol. 324, pp. 396–404. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  19. 19.
    Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages. RAIRO Informatique Théoretique et Applications 28, 233–253 (1994)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ng, Y.K., Shinohara, T.: Developments from enquiries into the learnability of the pattern languages from positive data. Theoretical Computer Science 397, 150–165 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ohlebusch, E., Ukkonen, E.: On the equivalence problem for E-pattern languages. Theoretical Computer Science 186, 231–248 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Reidenbach, D.: A non-learnable class of E-pattern languages. Theoretical Computer Science 350, 91–102 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Reidenbach, D.: Discontinuities in pattern inference. Theoretical Computer Science 397, 166–193 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Reidenbach, D., Schmid, M.L.: A polynomial time match test for large classes of extended regular expressions. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 241–250. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 468–479. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Schmid, M.L.: A note on the complexity of matching patterns with variables. Information Processing Letters (Submitted)Google Scholar
  27. 27.
    Schmid, M.L.: On the Membership Problem for Pattern Languages and Related Topics. PhD thesis, Department of Computer Science, Loughborough University (2012)Google Scholar
  28. 28.
    Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  29. 29.
    Shinohara, T.: Polynomial time inference of pattern languages and its application. In: Proc. 7th IBM Symposium on Mathematical Foundations of Computer Science, pp. 191–209 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Henning Fernau
    • 1
  • Markus L. Schmid
    • 1
  1. 1.Fachbereich 4 – Abteilung InformatikUniversität TrierTrierGermany

Personalised recommendations