Intraventricular Dyssynchrony Assessment Using Regional Contraction from LV Motion Models

  • Avan Suinesiaputra
  • Brett R. Cowan
  • David A. Bluemke
  • Pau Medrano-Gracia
  • Daniel C. Lee
  • Jõao A. C. Lima
  • Alistair A. Young
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)


A spatiotemporal 3D left ventricular (LV) motion model was developed to extract regional function for intra left ventricular dyssynchrony (intra-LVD). A finite element model was divided into the standard 17 segments. Temporal interpolation was performed by using periodic control theoretic smoothing splines. Intra-LVD was assessed in terms of systolic dyssynchrony index (SDI) by measuring the dispersion of time to reach peak regional ejection fraction (TPREF). We compared two patient groups: 300 asymptomatic (A: 139M/161F, mean age: 61±9.7 yrs) and 105 patients with myocardial infarction (P: 81M/24F, mean age: 63±10.2 yrs). Consistent regional variation in TPREF was observed in the A group, with the basal septal segments having later TPREF. Omitting these segments significantly reduced the SDI values in both groups (P < .001), but improved the statistical differences between cohorts (P: 8.46±4.15% vs A: 6.03±2.93% with basal septal segments; P: 7.24±4.08% vs A: 4.22±2.27% without). The mean Mahalanobis distance of the P group to the distribution of the A group was increased from 2.66±4.63% to 4.99±8.26% (P < .001). These results strongly suggest that basal septal regions should be removed from intra-LVD indices, to provide better discrimination between the two cohorts.


Cardiac Resynchronization Therapy Mechanical Dyssynchrony Leave Ventricular Reverse Remodel Left Ventricular Mechanical Dyssynchrony Systolic Dyssynchrony Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bild, D.E., Bluemke, D.A., et al.: Multi-ethnic study of atherosclerosis: objectives and design. Am. J. Epidemiol. 156(9), 871–881 (2002)CrossRefGoogle Scholar
  2. 2.
    van Bommel, R.J., Tanaka, H., et al.: Association of intraventricular mechanical dyssynchrony with response to cardiac resynchronization therapy in heart failure patients with a narrow QRS complex. Eur. Heart J. 31(24), 3054–3062 (2010)CrossRefGoogle Scholar
  3. 3.
    Cerqueira, M.D., Weissman, N.J., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4), 539–542 (2002)CrossRefGoogle Scholar
  4. 4.
    Chalil, S., Stegemann, B., et al.: Intraventricular dyssynchrony predicts mortality and morbidity after cardiac resynchronization therapy: a study using cardiovascular magnetic resonance tissue synchronization imaging. J. Am. Coll. Cardiol. 50(3), 243–252 (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Henneman, M.M., et al.: Assessment of left ventricular mechanical dyssynchrony by phase analysis of ECG-gated SPECT myocardial perfusion imaging. J. Nucl. Cardiol. 15(1), 127–136 (2008)CrossRefGoogle Scholar
  6. 6.
    Faletra, F.F., Conca, C., et al.: Comparison of eight echocardiographic methods for determining the prevalence of mechanical dyssynchrony and site of latest mechanical contraction in patients scheduled for cardiac resynchronization therapy. Am. J. Cardiol. 103(12), 1746–1752 (2009)CrossRefGoogle Scholar
  7. 7.
    Fonseca, C.G., Backhaus, M., et al.: The Cardiac Atlas Project –an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)CrossRefGoogle Scholar
  8. 8.
    Helm, R.H., Leclercq, C., Faris, O.P., et al.: Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation 111(21), 2760–2767 (2005)CrossRefGoogle Scholar
  9. 9.
    Hunter, P.J., Pullan, A.J., Smaill, B.H.: Modeling total heart function. Annu. Rev. Biomed. Eng. 5, 147–177 (2003)CrossRefGoogle Scholar
  10. 10.
    Kadish, A.H., Bello, D., et al.: Rationale and design for the Defibrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation (DETERMINE) trial. J. Cardiovasc Electrophysiol 20(9), 982–987 (2009)CrossRefGoogle Scholar
  11. 11.
    Kano, H., Egerstedt, M., et al.: Periodic smoothing splines. Automatica 44(1), 185–192 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kapetanakis, S., Kearney, M.T., et al.: Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 112(7), 992–1000 (2005)CrossRefGoogle Scholar
  13. 13.
    Padeletti, L., Perini, A.P., Gronda, E.: Cardiac resynchronization therapy: the issue of non-response. Heart Fail. Rev. 17(1), 97–105 (2012)CrossRefGoogle Scholar
  14. 14.
    Young, A.A., Cowan, B.R., et al.: Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology 216(2), 597–602 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Avan Suinesiaputra
    • 1
  • Brett R. Cowan
    • 1
  • David A. Bluemke
    • 2
  • Pau Medrano-Gracia
    • 1
  • Daniel C. Lee
    • 3
  • Jõao A. C. Lima
    • 4
  • Alistair A. Young
    • 1
  1. 1.Anatomy with RadiologyUniversity of AucklandNew Zealand
  2. 2.National Institute of Health Clinical CenterUSA
  3. 3.Feinberg Cardiovascular Research InstituteNorthwestern UniversityUSA
  4. 4.Cardiovascular ImagingThe John Hopkins HospitalUSA

Personalised recommendations