Advertisement

Large Scale Left Ventricular Shape Atlas Using Automated Model Fitting to Contours

  • Pau Medrano-Gracia
  • Brett R. Cowan
  • David A. Bluemke
  • J. Paul Finn
  • João A. C. Lima
  • Avan Suinesiaputra
  • Alistair A. Young
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

We demonstrate that large legacy databases of manually segmented cardiac MR images can be used to build a shape atlas based on 3D left-ventricular finite-element models. We make use of the Cardiac Atlas Project database to build an atlas of 2,045 asymptomatic cases from the MESA study. Manually placed anatomical landmarks on long-axis and short-axis magnetic resonance images were combined with manually drawn contours on the short axis images which were corrected for breath-hold mis-registration using an automated method. The contours were then fitted by the model using linear least squares optimisation. The fitting error was 0.5 ±0.4 mm at end-diastole and 0.5 ±0.6 mm at end-systole (mean ± std. dev.). Results were validated against 3D models created by experts in a sub-sample of 253 cases using manual breath-hold registration. The atlas surface error was 1.3 ±0.8 mm at end-diastole and 1.2 ±0.9 mm at end-systole. The end-diastolic volume error was 9.0 ±8.7 ml; the end-systolic volume error was 0.8 ±6.3 ml; and the mass error 5.9 ±12.9 g. These differences arose mainly at the base and apex because long-axis images were used in the validation models, but were only used in the automated models to define basal fiducial markers. All models were aligned and scaled, and finally analysed by principal component analysis. Significant differences were found in the first mode shape (sphericity) by gender, smoking, and hypertension.

Keywords

Statistical Model Cardiac Magnetic Resonance Imaging (MRI) Finite Element Modelling Contour atlas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lötjönen, J., et al.: Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. MIA 8(3), 371–386 (2004)Google Scholar
  2. 2.
    Luo, H., O’Donnell, T.: A 3D statistical shape model for the left ventricle of the heart. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1300–1301. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Medrano-Gracia, P., Cowan, B.R., Finn, J.P., Fonseca, C.G., Kadish, A.H., Lee, D.C., Tao, W., Young, A.A.: The Cardiac Atlas Project: preliminary description of heart shape in patients with myocardial infarction. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 46–53. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Ordas, S., et al.: A statistical shape model of the heart and its application to model-based segmentation. In: SPIE Medical Imaging, vol. 6511 (2007)Google Scholar
  5. 5.
    Perperidis, D., Mohiaddin, R.H., Rueckert, D.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 402–410. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Rueckert, D., et al.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE-TMI 22(8), 1014–1025 (2003)Google Scholar
  7. 7.
    Lamata, P., et al.: An accurate, fast and robust method to generate patient-specific cubic hermite meshes. MedIA 15(6), 801–813 (2011)Google Scholar
  8. 8.
    Lewandowski, A., et al.: The preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry and function. Circulation (2012)Google Scholar
  9. 9.
    Bild, D.E., et al.: Multi-ethnic study of atherosclerosis: objectives and design. Am. J. Epidemiol. 156, 871–881 (2002)CrossRefGoogle Scholar
  10. 10.
    Fonseca, C.G., et al.: The Cardiac Atlas Project – an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)CrossRefGoogle Scholar
  11. 11.
    Yan, R.T., et al.: Regional left ventricular myocardial dysfunction as a predictor of incident cardiovascular events MESA (multi-ethnic study of atherosclerosis). Journal of the American College of Cardiology 57(17), 1735–1744 (2011)CrossRefGoogle Scholar
  12. 12.
    Young, A., Hunter, P., Smaill, B.: Estimation of epicardial strain using the motions of coronary bifurcations in biplane cineangiography. IEEE Transactions on Biomedical Engineering 39(5), 526–531 (1992)CrossRefGoogle Scholar
  13. 13.
    McLeish, K., et al.: A study of the motion and deformation of the heart due to respiration. IEEE-TMI 21(9), 1142–1150 (2002)Google Scholar
  14. 14.
    Young, A., et al.: Left ventricular mass and volume: Fast calculation with guide-point modeling on MR images. Radiology 216(2), 597 (2000)Google Scholar
  15. 15.
    Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 32, 922–923 (1976)CrossRefGoogle Scholar
  16. 16.
    Üzümcü, M., Frangi, A.F., Sonka, M., Reiber, J.H.C., Lelieveldt, B.: ICA vs. PCA active appearance models: Application to cardiac MR segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 451–458. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Lu, X., Georgescu, B., Jolly, M.-P., Guehring, J., Young, A., Cowan, B., Littmann, A., Comaniciu, D.: Cardiac anchoring in MRI through context modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 383–390. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Suinesiaputra, A., et al.: Left ventricular segmentation challenge from cardiac MRI: A collation study. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 88–97. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pau Medrano-Gracia
    • 1
  • Brett R. Cowan
    • 1
  • David A. Bluemke
    • 2
  • J. Paul Finn
    • 3
  • João A. C. Lima
    • 4
  • Avan Suinesiaputra
    • 1
  • Alistair A. Young
    • 1
  1. 1.Anatomy with RadiologyUniversity of AucklandNew Zealand
  2. 2.National Institutes of Health Clinical CenterUSA
  3. 3.Diagnostic CardioVascular ImagingUniversity of CaliforniaUSA
  4. 4.Johns Hopkins HospitalJohns Hopkins UniversityUSA

Personalised recommendations