Advertisement

Myocardial Deformation from Local Frequency Estimation in Tagging MRI

  • L. C. Mark Bruurmijn
  • Hanne B. Kause
  • Olena G. Filatova
  • Remco Duits
  • Andrea Fuster
  • Luc M. J. Florack
  • Hans C. van Assen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

We consider a new method to analyse deformation of the myocardial wall from tagging magnetic resonance images. The method exploits the fact that a regular pattern of stripe tags induces a time-dependent frequency covector field tightly coupled to the myocardial tissue and not affected by tag fading. The corresponding local frequency can be disambiguated with the help of the Gabor transform. The transformation of the tagging frequency covector field is governed by the deformation tensor field. Reversely, the deformation (and strain) tensor field can be retrieved from local frequency estimates given at least n (independent) tagging sequences, where n denotes spatial dimension. For the sake of illustration we consider the conventional case n = 2. Moreover, we make use of an overdetermined system by exploiting 4 instead of 2 tagging directions, which contributes to the robustness of the results. The method does not require explicit knowledge of material motion or tag line extraction. Displacement estimations are compared to HARP.

Keywords

Tagging Magnetic Resonance Imaging Myocardial Deformation Gabor Transform Cardiac Image Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zerhouni, E.A., Parish, D.M., Rogers, W.J., Yang, A., Shapiro, E.P.: Human heart: Tagging with MR imaging—a method for noninvasive assessment of myocardial motion. Radiology 169(1), 59–63 (1988)Google Scholar
  2. 2.
    Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171(3), 841–845 (1989)Google Scholar
  3. 3.
    Götte, M.J., van Rossum, A.C., Twisk, J.W.R., Kuijer, J.P.A., Marcus, J.M., Visser, C.A.: Quantification of regional contractile function after infarction: Strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. Journal of the American College of Cardiology 37, 808–817 (2001)CrossRefGoogle Scholar
  4. 4.
    Qian, Z., Liu, Q., Metaxas, D., Axel, L.: Identifying regional cardiac abnormalities from myocardial strains using non-tracking-based strain estimation and spatio-temporal tensor analysis. IEEE Transactions on Medical Imaging 30(12), 2017–2029 (2011)CrossRefGoogle Scholar
  5. 5.
    Florack, L., van Assen, H.: A new methodology for multiscale myocardial deformation and strain analysis based on tagging MRI. International Journal of Biomedical Imaging (2010), doi:10.1155/2010/341242Google Scholar
  6. 6.
    Smal, I., Carranza-Herrezuelo, N., Klein, S., Niessen, W., Meijering, E.: Quantitative comparison of tracking methods for motion analysis in tagged MRI. In: Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2011, Chicago, Illinois, March 30 - April 2, 2011, pp. 345–348 (April 2011)Google Scholar
  7. 7.
    Gupta, S.N., Prince, J.L.: On variable brightness optical flow for tagged MRI. In: Bizais, Y. (ed.) Proceedings of the Fourteenth International Conference on Information Processing in Medical Imaging–IPMI 1995, Ile de Berder, France, pp. 323–334. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  8. 8.
    Van Assen, H., Florack, L., Simonis, F., Westenberg, J., Strijkers, G.: Cardiac strain and rotation analysis using multi-scale optical flow. In: Wittek, A., Nielsen, P.M.F., Miller, K. (eds.) Computational Biomechanics for Medicine V, pp. 89–100. Springer (2010)Google Scholar
  9. 9.
    Garcia-Barnés, J., Gil, D., Pujadas, S., Carreras, F.: Variational framework for assessment of the left ventricle motion. Mathematical Modelling of Natural Phenomena 3(6), 76–100 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic phase MRI. IEEE Transactions on Medical Imaging 19(3), 186–202 (2000)CrossRefGoogle Scholar
  11. 11.
    Arts, T., Prinzen, F.W., Delhaas, T., Milles, J.R., Rossi, A.C., Clarysse, P.: Mapping displacement and deformation of the heart with local sine-wave modeling. IEEE Transactions on Medical Imaging 29(5) (May 2010)Google Scholar
  12. 12.
    Duits, R., Führ, H., Janssen, B., Bruurmijn, M., Florack, L., van Assen, H.: Evolution equations on Gabor transforms and their applications. Applied and Computational Harmonic Analysis (2012), doi:10.1016/j.acha.2012.11.007Google Scholar
  13. 13.
    Janssen, A.: The Zak transform: A signal transform for samples time-continuous signals. Philips Journal of Research 43(1), 23–69 (1988)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • L. C. Mark Bruurmijn
    • 1
  • Hanne B. Kause
    • 2
  • Olena G. Filatova
    • 2
  • Remco Duits
    • 1
    • 3
  • Andrea Fuster
    • 1
    • 3
  • Luc M. J. Florack
    • 1
    • 3
  • Hans C. van Assen
    • 2
  1. 1.Department of Biomedical EngineeringEindhoven University of TechnologyThe Netherlands
  2. 2.Department of Electrical EngineeringEindhoven University of TechnologyThe Netherlands
  3. 3.Department of Mathematics & Computer ScienceEindhoven University of TechnologyThe Netherlands

Personalised recommendations