Changes in In Vivo Myocardial Tissue Properties Due to Heart Failure

  • Vicky Y. Wang
  • Alistair A. Young
  • Brett R. Cowan
  • Martyn P. Nash
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7945)

Abstract

A clinical image data driven mechanics analysis was used to quantify changes in tissue-specific passive and contractile material properties for groups of normal and HF patients. We have developed an automated mechanics modelling framework to firstly construct left ventricular (LV) mechanics models based on shape information derived from non-invasive dynamic magnetic resonance images, then to characterise passive tissue stiffness and maximum contractile stress by matching the simulated LV mechanics with data from the dynamic cardiac images. Preliminary statistical analysis revealed that patients with hypertrophy or non-ischemic heart failure exhibited increased passive myocardial stiffness compared to the normals. Elevated maximum contractile stress was also observed for hypertrophic patients. Tissue-specific parameter estimation analysis of this kind can potentially be applied in the clinical setting to provide a more specific disease measure to assist with stratification of HF patients.

Keywords

In vivo passive myocardial stiffness in vivo maximal active myocardial stress hypertrophy non-ischemic heart failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zile, M.R., Brutsaert, D.L.: New Concepts in Diatsolic Dysfunction and Diastolic Heart Failure: Part I: Diagnosis, Prognosis, and Measurements of Diastolic Function. Circ. 105, 1387–1393 (2002)CrossRefGoogle Scholar
  2. 2.
    Kitzman, D.W., et al.: Pathophysiological Characterization of Isolated Diastolic Heart Failure in Comparison to Systolic Heart Failure. J. Am. Med. Assoc. 288, 2144–2150 (2002)CrossRefGoogle Scholar
  3. 3.
    Zile, M.R., Baicu, C.F., Gaasch, W.H.: Diastolic Heart Failure - Abnormalities in Active Relaxation and Passive Stiffness of the Left Ventricle. New Engl. J. Med. 350(19), 1953–1959 (2004)CrossRefGoogle Scholar
  4. 4.
    Moulton, M.J., et al.: Myocardial material property determination in the in vivo heart using magnetic resonance imaging. Int. J. Card. Imaging 12, 153–167 (1996)CrossRefGoogle Scholar
  5. 5.
    Paulus, W.J., et al.: How to diagnose diastolic heart failure. Eur. Heart J. 28(20), 2539–2550 (2007)CrossRefGoogle Scholar
  6. 6.
    Leonard, B.L., Smaill, B.H., LeGrice, I.J.: Structural Remodeling and Mechanical Function in Heart Failure. Microsc. Microanal. 18(01), 50–67 (2012)CrossRefGoogle Scholar
  7. 7.
    Westermann, D., et al.: Role of Left Ventricular Stiffness in Heart Failure With Normal Ejection Fraction. Circ. 117(16), 2051–2060 (2008)CrossRefGoogle Scholar
  8. 8.
    Teeters, J.C., Alexis, J.D.: Systolic Heart Failure. In: Manual of Heart Failure Management, pp. 1–9. Springer, London (2009)Google Scholar
  9. 9.
    McMurray, J.J.V.: Systolic Heart Failure. New Engl. J. Med. 362(3), 228–238 (2010)CrossRefGoogle Scholar
  10. 10.
    Wang, V.Y., et al.: Automated Personalised Human Left Ventricular FE Models To Investigate Heart Failure Mechanics. (in press)Google Scholar
  11. 11.
    Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A.J., Wright, G.A.: Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI. The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge, http://hdl.handle.net/10380/3070
  12. 12.
    LV Segmentation Challenge: Data, http://smial.sri.utoronto.ca/LV_Challenge/Data.html
  13. 13.
    Fonseca, C.G., et al.: The Cardiac Atlas Project – An Imaging Database for Computational Modeling and Statistical Atlases of the Heart. Bioinformatics 27, 2288–2295 (2011)CrossRefGoogle Scholar
  14. 14.
    Young, A.A., et al.: Left Ventricular Mass and Volume: Fast Calculation with Guide-Point Modeling on MR Images1. Radiology 216(2), 597–602 (2000)Google Scholar
  15. 15.
    Li, B., et al.: In-line automated tracking for four dimensional ventricular function with magnetic resonance imaging. J. Am. Coll. Cardiol. Img. 3, 860–866 (2010)CrossRefGoogle Scholar
  16. 16.
    Nielsen, P.M.F., Le Grice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 1378, H1365-H1378 (1991)Google Scholar
  17. 17.
    Honda, H., et al.: Non-invasive estimation of human left ventricular end-diastolic pressure. Med. Eng. Phys. 6, 485–488 (1998)CrossRefGoogle Scholar
  18. 18.
    McKay, R.G., et al.: Assessment of the end-systolic pressure-volume relationship in human beings with the use of a time-varying elastance model. Circ. 74, 97–104 (1986)CrossRefGoogle Scholar
  19. 19.
    Scali, M., Basso, M., Gandolfo, A., Bombardini, T., Bellotti, P., Sicari, R.: Real Time 3D echocardiography (RT3D) for assessment of ventricular and vascular function in hypertensive and heart failure patients. Cardiovasc. Ultrasound 10(1), 27 (2012)CrossRefGoogle Scholar
  20. 20.
    Guccione, J.M., et al.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 43–55 (1991)CrossRefGoogle Scholar
  21. 21.
    Wang, V.Y., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Myocardial Contractility and Regional Work throughout the Cardiac Cycle Using FEM and MRI. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 149–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Hunter, P.J., McCulloch, A.D., ter Keurs, H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. and Molec. Biol. 69, 289–331 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vicky Y. Wang
    • 1
  • Alistair A. Young
    • 1
    • 2
  • Brett R. Cowan
    • 3
  • Martyn P. Nash
    • 1
    • 4
  1. 1.Auckland Bioengineering InstituteUniversity of AucklandNew Zealand
  2. 2.Department of Anatomy and RadiologyUniversity of AucklandNew Zealand
  3. 3.Centre for Advanced MRIUniversity of AucklandNew Zealand
  4. 4.Department of Engineering ScienceUniversity of AucklandNew Zealand

Personalised recommendations