Density Driven Diffusion

  • Freddie Åström
  • Vasileios Zografos
  • Michael Felsberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)


In this work we derive a novel density driven diffusion scheme for image enhancement. Our approach, called D3, is a semi-local method that uses an initial structure-preserving oversegmentation step of the input image. Because of this, each segment will approximately conform to a homogeneous region in the image, allowing us to easily estimate parameters of the underlying stochastic process thus achieving adaptive non-linear filtering. Our method is capable of producing competitive results when compared to state-of-the-art methods such as non-local means, BM3D and tensor driven diffusion on both color and grayscale images.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, vol. 2, pp. 60–65 (June 2005)Google Scholar
  2. 2.
    Comaniciu, D., Meer, P., Member, S.: Mean shift: A robust approach toward feature space analysis. PAMI 24, 603–619 (2002)CrossRefGoogle Scholar
  3. 3.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space. In: IEEE International Conference on Image Processing, ICIP 2007, September 16-October 19, vol. 1, pp. I-313, I-316 (2007)Google Scholar
  4. 4.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3d filtering. In: SPIE (2006)Google Scholar
  5. 5.
    Åström, F., Baravdish, G., Felsberg, M.: On Tensor-Based PDEs and their Corresponding Variational Formulations with Application to Color Image Denoising. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 215–228. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Weickert, J.: Anisotropic Diffusion In Image Processing. ECMI Series. Teubner-Verlag, Stuttgart (1998)MATHGoogle Scholar
  7. 7.
    Mester, R., Conrad, C., Guevara, A.: Multichannel segmentation using contour relaxation: fast super-pixels and temporal propagation. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 250–261. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Åström, F., Felsberg, M., Baravdish, G., Lundström, C.: Targeted Iterative Filtering. In: Pack, T. (ed.) SSVM 2013. LNCS, vol. 7893, pp. 1–11. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. PAMI 12, 629–639 (1990)CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)Google Scholar
  11. 11.
    Felsberg, M.: Autocorrelation-driven diffusion filtering. TIP 20(7), 1797–1806 (2011)MathSciNetGoogle Scholar
  12. 12.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423 (July 2001)Google Scholar
  13. 13.
    Åström, F., Felsberg, M., Lenz, R.: Color Persistent Anisotropic Diffusion of Images. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 262–272. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Lenz, R., Latorre Carmona, P.: Hierarchical s(3)-coding of rgb histograms. In: Ranchordas, A., Pereira, J.M., Araújo, H.J., Tavares, J.M.R.S. (eds.) VISIGRAPP 2009. CCIS, vol. 68, pp. 188–200. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Freddie Åström
    • 1
    • 2
  • Vasileios Zografos
    • 1
  • Michael Felsberg
    • 1
    • 2
  1. 1.Computer Vision LaboratoryLinköping UniversitySweden
  2. 2.Center for Medical Image Science and Visualization (CMIV)Linköping UniversitySweden

Personalised recommendations