Head Pose Estimation Using Multi-scale Gaussian Derivatives

  • Varun Jain
  • James L. Crowley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)


In this paper we approach the problem of head pose estimation by combining Multi-scale Gaussian Derivatives with Support Vector Machines.

We evaluate the approach on the Pointing04 and CMU-PIE data sets and to estimate the pan and tilt of the head from facial images. We achieved a mean absolute error of 6.9 degrees for pan and 8.0 degrees for tilt on the Pointing04 data set.


Support Vector Machine Gesture Recognition Automatic Face Radial Basis Kernel Deictic Gesture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gee, A., Cipolla, R.: Fast visual tracking by temporal census. Image and Vision Computing 14(2), 105–114 (1996)CrossRefGoogle Scholar
  2. 2.
    Horprasert, T., Yacoob, Y., Davis, L.: Computing 3-d head orientation from a monocular image sequence. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 242–247 (1996)Google Scholar
  3. 3.
    Wang, J.-G., Sung, E.: Em enhancement of 3d head pose estimated by point at infinity. Image and Vision Computing 25(12), 1864–1874 (2007)CrossRefGoogle Scholar
  4. 4.
    Niyogi, S., Freeman, W.: Example-based head tracking. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 374–378 (1996)Google Scholar
  5. 5.
    Stiefelhagen, R.: Estimating head pose with neural networks results on the pointing04 icpr workshop evaluation data. In: Proceedings of ICPR Workshop Visual Observation of Deictic Gestures (2004)Google Scholar
  6. 6.
    Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009)CrossRefGoogle Scholar
  7. 7.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial features. In: Proceedings of POINTING 2004 International Workshop on Visual Observation of Deictic Gestures (2004)Google Scholar
  8. 8.
  9. 9.
    Jain, V., Crowley, J.: Smile detection using multi-scale gaussian derivatives. In: Proceedings of the 12th WSEAS International Conference on Signal Processing, Robotics and Automation, pp. 149–154 (2013)Google Scholar
  10. 10.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Press (1994)Google Scholar
  11. 11.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  12. 12.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)CrossRefGoogle Scholar
  13. 13.
    Crowley, J.L., Riff, O.: Springer Lecture Notes on Computer Science. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 584–598. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Jolliffe, I.T.: Principal Component Analysis. Springer (2002)Google Scholar
  15. 15.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, NY (1998)zbMATHGoogle Scholar
  16. 16.
    Cortes, C., Vapnik, V.N.: Support-Vector Networks. In: Machine Learning, vol. 20, pp. 273–297. Springer (1995)Google Scholar
  17. 17.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 20(17), 137–154 (2004)CrossRefGoogle Scholar
  18. 18.
    Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–51 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Varun Jain
    • 1
    • 2
  • James L. Crowley
    • 1
    • 3
  1. 1.INRIA Grenoble Rhône-AlpesFrance
  2. 2.Université de GrenobleFrance
  3. 3.Grenoble INPFrance

Personalised recommendations