Globally Optimal Cortical Surface Matching with Exact Landmark Correspondence

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)


We present a method for establishing correspondences between human cortical surfaces that exactly matches the positions of given point landmarks, while attaining the global minimum of an objective function that quantifies how far the mapping deviates from conformality. On each surface, a conformal transformation is applied to the Euclidean distance metric, resulting in a hyperbolic metric with isolated cone point singularities at the landmarks. Equivalently, each surface is mapped to a hyperbolic orbifold: a pillow-like surface with each point landmark corresponding to a pillow corner. An initial surface-to-surface mapping exactly aligns the landmarks, and gradient descent is used to find the single, global minimum of the Dirichlet energy of the remainder of the mapping. Using a population of real MRI-based cortical surfaces with manually labeled sulcus endpoints as landmarks, we evaluate the approach by how much it distorts surfaces and by its biological plausibility: how well it aligns previously-unseen anatomical landmarks and by how well it promotes expected associations between cortical thickness and age. We show that, compared to a painstakingly-tuned approach that balances a tradeoff between minimizing landmark mismatch and Dirichlet energy, our method has similar biological plausibility, superior surface distortion, a better theoretical foundation, and fewer arbitrary parameters to tune. We also compare to conformal mapper in the spherical domain to show that sacrificing exact conformality of the mapping does not cause noticeable reductions in biological plausibility.


Cortical Thickness Initial Mapping Homotopy Class Cortical Surface Cone Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auzias, G., Lefèvre, J., Le Troter, A., Fischer, C., Perrot, M., Régis, J., Coulon, O.: Model-driven harmonic parameterization of the cortical surface. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 310–317. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bers, L.: Uniformization, moduli, and kleinian groups. Bull. London Math. Soc. 4, 257–300 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bobenko, A., Pinkall, U., Springborn, B.: Discrete conformal maps and ideal hyperbolic polyhedra, pp. 1–49 (2010)Google Scholar
  4. 4.
    Debette, S., Beiser, A., DeCarli, C., Au, R., Himali, J.J., Kelly-Hayes, M., Romero, J.R., Kase, C.S., Wolf, P.A., Seshadri, S.: Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality the framingham offspring study. Stroke 41(4), 600–606 (2010)CrossRefGoogle Scholar
  5. 5.
    Eells, J., Sampson, J.H.: Harmonic mappings of riemannian manifolds. American Journal of Mathematics 86, 109–160 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fletcher, E., Singh, B., Harvey, D., Carmichael, O., DeCarli, C.: Adaptive image segmentation for robust measurement of longitudinal brain tissue change. In: EMBC, pp. 5319–5322. IEEE (2012)Google Scholar
  7. 7.
    Fuhrmann, S., Ackermann, J., Kalbe, T., Goesele, M.: Direct Resampling for Isotropic Surface Remeshing. In: VMV, pp. 9–16 (2010)Google Scholar
  8. 8.
    Hartman, P.: On homotopic harmonic maps. Canadian Journal of Mathematics 19, 673–687 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hurdal, M.K., Stephenson, K.: Discrete conformal methods for cortical brain flattening. NeuroImage 45, S86–S98 (2009)CrossRefGoogle Scholar
  10. 10.
    Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25, 412–438 (2006)CrossRefGoogle Scholar
  11. 11.
    Kochunov, P., Rogers, W., Mangin, J.-F., Lancaster, J.: A library of cortical morphology analysis tools to study development, aging and genetics of cerebral cortex. Neuroinformatics 10, 81–96 (2012)CrossRefGoogle Scholar
  12. 12.
    Li, X., Bao, Y., Guo, X., Jin, M., Gu, X., Qin, H.: Globally optimal surface mapping for surfaces with arbitrary topology. IEEE Trans. Vis. Comput. Graphics 14, 805–819 (2008)CrossRefGoogle Scholar
  13. 13.
    Lin, C., Moré, J.: Newton’s method for large bound-constrained optimization problems. SIAM Journal on Optimization 9, 1100–1127 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mangin, J.F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3d magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5(4), 297–318 (1995)CrossRefGoogle Scholar
  15. 15.
    Ming, L., Wang, Y., Chan, T.F., Thompson, P.: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl. Numer. Math. 57, 847–858 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Salat, D.H., Buckner, R.L., Snyder, A.Z., Greve, D.N., Desikan, R.S.R., Busa, E., Morris, J.C., Dale, A.M., Fischl, B.: Thinning of the cerebral cortex in aging. Cerebral Cortex 14(7), 721–730 (2004)CrossRefGoogle Scholar
  17. 17.
    Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH, pp. 409–416 (2001)Google Scholar
  18. 18.
    Sowell, E.R., Thompson, P.M., Rex, D., Kornsand, D., Tessner, K.D., Jernigan, T.L., Toga, A.W.: Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cerebral Cortex 12, 17–26 (2002)CrossRefGoogle Scholar
  19. 19.
    Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27, 1–11 (2008)CrossRefGoogle Scholar
  20. 20.
    Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: SGP, pp. 20–30 (2003)Google Scholar
  21. 21.
    Thurston, W.P.: Three dimensional manifolds, kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. 6, 357–382 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: SGP, pp. 201–210 (2006)Google Scholar
  23. 23.
    Wang, Y., Dai, W., Chou, Y.-Y., Gu, X., Chan, T.F., Toga, A.W., Thompson, P.M.: Studying brain morphometry using conformal equivalence class. In: ICCV, pp. 2365–2372 (2009)Google Scholar
  24. 24.
    Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.-T.: Conformal slit mapping and its applications to brain surface parameterization. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 585–593. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Weber, O., Myles, A., Zorin, D.: Computing extremal quasiconformal maps. Computer Graphics Forum 31, 1679–1689 (2012)CrossRefGoogle Scholar
  26. 26.
    Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C., et al.: A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4(1), 58–73 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of CaliforniaDavisUSA
  2. 2.Mathematics DepartmentUniversity of CaliforniaDavisUSA
  3. 3.Neurology DepartmentUniversity of CaliforniaDavisUSA
  4. 4.LIRISUniversité de Lyon, CNRSFrance

Personalised recommendations