Advertisement

Group-Wise Cortical Correspondence via Sulcal Curve-Constrained Entropy Minimization

  • Ilwoo Lyu
  • Sun Hyung Kim
  • Joon-Kyung Seong
  • Sang Wook Yoo
  • Alan C. Evans
  • Yundi Shi
  • Mar Sanchez
  • Marc Niethammer
  • Martin A. Styner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7917)

Abstract

We present a novel cortical correspondence method employing group-wise registration in a spherical parametrization space for the use in local cortical thickness analysis in human and non-human primate neuroimaging studies. The proposed method is unbiased registration that estimates a continuous smooth deformation field into an unbiased average space via sulcal curve-constrained entropy minimization using spherical harmonic decomposition of the spherical deformation field. We initialize a correspondence by our pair-wise method that establishes a surface correspondence with a prior template. Since this pair-wise correspondence is biased to the choice of a template, we further improve the correspondence by employing unbiased ensemble entropy minimization across all surfaces, which yields a deformation field onto the iteratively updated unbiased average. The specific entropy metric incorporates two terms: the first focused on optimizing the correspondence of automatically extracted sulcal landmarks and the second on that of sulcal depth maps. We also propose an encoding scheme for spherical deformation via spherical harmonics as well as a novel method to choose an optimal spherical polar coordinate system for the most efficient deformation field estimation. The experimental results show evidence that the proposed method improves the correspondence quality in non-human primate and human subjects as compared to the pair-wise method.

Keywords

Group-wise correspondence Sulcal curves Spherical harmonics Entropy minimization Cortical thickness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cates, J., Fletcher, P., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 333–345. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Kim, J., Singh, V., Lee, J., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., Lee, J., Kim, S., Evans, A.: Automated 3-d extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification. NeuroImage 27(1), 210–221 (2005)CrossRefGoogle Scholar
  3. 3.
    Lyttelton, O., Boucher, M., Robbins, S., Evans, A.: An unbiased iterative group registration template for cortical surface analysis. NeuroImage 34(4), 1535–1544 (2007)CrossRefGoogle Scholar
  4. 4.
    Lyu, I., Kim, S., Seong, J., Yoo, S., Evans, A., Shi, Y., Sanchez, M., Niethammer, M., Styner, M.: Cortical correspondence via sulcal curve-constrained spherical registration with application to macaque studies. In: Ourselin, S., Haynor, D. (eds.) Medical Imaging 2013: Image Processing, vol. 8669, pp. 86692X-1–86692X-7. SPIE (2013)Google Scholar
  5. 5.
    Lyu, I., Seong, J., Shin, S., Im, K., Roh, J., Kim, M., Kim, G., Kim, J., Evans, A., Na, D., Lee, J.: Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples. NeuroImage 52(1), 142–157 (2010)CrossRefGoogle Scholar
  6. 6.
    Mangin, J., Riviere, D., Cachia, A., Duchesnay, E., Cointepas, Y., Papadopoulos-Orfanos, D., Scifo, P., Ochiai, T., Brunelle, F., Régis, J.: A framework to study the cortical folding patterns. NeuroImage 23, S129–S138 (2004)Google Scholar
  7. 7.
    Oguz, I., Niethammer, M., Cates, J., Whitaker, R., Fletcher, T., Vachet, C., Styner, M.: Cortical correspondence with probabilistic fiber connectivity. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 651–663. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Park, H., Park, J., Seong, J., Na, D., Lee, J.: Cortical surface registration using spherical thin-plate spline with sulcal lines and mean curvature as features. Journal of Neuroscience Methods 206(1), 46–53 (2012)CrossRefGoogle Scholar
  9. 9.
    Powell, M.: The newuoa software for unconstrained optimization without derivatives. In: Large-Scale Nonlinear Optimization, vol. 83, pp. 255–297 (2006)Google Scholar
  10. 10.
    Robbins, S.: Anatomical standardization of the human brain in euclidean 3-space and on the cortical 2-manifold. Ph.D. thesis, McGill University (2004)Google Scholar
  11. 11.
    Seong, J., Im, K., Yoo, S., Seo, S., Na, D., Lee, J.: Automatic extraction of sulcal lines on cortical surfaces based on anisotropic geodesic distance. NeuroImage 49(1), 293–302 (2010)Google Scholar
  12. 12.
    Van Essen, D.: Surface-based approaches to spatial localization and registration in primate cerebral cortex. NeuroImage 23, S97–S107 (2004)Google Scholar
  13. 13.
    Yeo, B., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: Fast diffeomorphic landmark-free surface registration. IEEE Trans. Med. Imaging 29(3), 650–668 (2010)CrossRefGoogle Scholar
  14. 14.
    Zou, G., Hua, J., Muzik, O.: Non-rigid surface registration using spherical thin-plate splines. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 367–374. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ilwoo Lyu
    • 1
  • Sun Hyung Kim
    • 2
  • Joon-Kyung Seong
    • 4
  • Sang Wook Yoo
    • 5
  • Alan C. Evans
    • 6
  • Yundi Shi
    • 2
  • Mar Sanchez
    • 7
  • Marc Niethammer
    • 1
    • 3
  • Martin A. Styner
    • 1
    • 2
  1. 1.Dept. of Computer ScienceUniversity of North CarolinaChapel HillUSA
  2. 2.Dept. of PsychiatryUniversity of North CarolinaChapel HillUSA
  3. 3.BRICUniversity of North CarolinaChapel HillUSA
  4. 4.Dept. of Biomedical EngineeringKorea UniversitySeoulSouth Korea
  5. 5.Dept. of Computer ScienceKAISTDaejeonSouth Korea
  6. 6.Montreal Neurological InstituteMcGill UniversityMontrealCanada
  7. 7.Yerkes National Primate Research CenterEmory UniversityAtlantaUSA

Personalised recommendations