Contextual Locking for Dynamic Pushdown Networks

  • Peter Lammich
  • Markus Müller-Olm
  • Helmut Seidl
  • Alexander Wenner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7935)


Contextual locking is a scheme for synchronizing between possibly recursive processes that has been proposed by Chadha et al. recently. Contextual locking allows for arbitrary usage of locks within the same procedure call and Chadha et al. show that control-point reachability for two processes adhering to contextual locking is decidable in polynomial time. Here, we complement these results. We show that in presence of contextual locking, control-point reachability becomes PSPACE-hard, already if the number of processes is increased to three. On the other hand, we show that PSPACE is both necessary and sufficient for deciding control-point reachability of k processes for k > 2, and that this upper bound remains valid even if dynamic spawning of new processes is allowed. Furthermore, we consider the problem of regular reachability, i.e., whether a configuration within a given regular set can be reached. Here, we show that this problem is decidable for recursive processes with dynamic thread creation and contextual locking. Finally, we generalize this result to processes that additionally use a form of join operations.


Turing Machine Control Sequence Regular Language Procedure Call Recursive Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonnet, R., Chadha, R.: Bounded context-switching and reentrant locking. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 65–80. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent programs with procedures. Int. J. Found. Comput. Sci. 14(4), 551 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chadha, R., Madhusudan, P., Viswanathan, M.: Reachability under contextual locking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 437–450. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Esparza, J., Ganty, P.: Complexity of pattern-based verification for multithreaded programs. In: POPL, pp. 499–510. ACM (2011)Google Scholar
  6. 6.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-sensitive forward reachability analysis for concurrent programs with dynamic process creation. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 199–213. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Kahlon, V.: Boundedness vs. unboundedness of lock chains: Characterizing decidability of pairwise cfl-reachability for threads communicating via locks. In: LICS, pp. 27–36. IEEE Computer Society (2009)Google Scholar
  9. 9.
    Kahlon, V.: Reasoning about threads with bounded lock chains. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 450–465. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 505–518. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Trans. of the American Math. Society 95(2), 210–225 (1960)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lammich, P.: Lock-Sensitive Analysis of Parallel Programs. Ph.D. thesis, WWU Münster (June 2011)Google Scholar
  13. 13.
    Lammich, P., Müller-Olm, M.: Conflict analysis of programs with procedures, dynamic thread creation, and monitors. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 205–220. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-State Systems. Ph.D. thesis, TU München (April 1998)Google Scholar
  16. 16.
    Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable. ACM Trans. Program. Lang. Syst. 22(2), 416–430 (2000)CrossRefGoogle Scholar
  18. 18.
    Seidl, H., Steffen, B.: Constraint-based inter-procedural analysis of parallel programs. Nord. J. Comput. 7(4), 375–400 (2000)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Lammich
    • 1
  • Markus Müller-Olm
    • 2
  • Helmut Seidl
    • 1
  • Alexander Wenner
    • 2
  1. 1.Technische Universität MünchenGermany
  2. 2.Institut für InformatikWestfälische Wilhelms-Universität MünsterGermany

Personalised recommendations