Advertisement

Interpolation-Based Verification of Floating-Point Programs with Abstract CDCL

  • Martin Brain
  • Vijay D’Silva
  • Alberto Griggio
  • Leopold Haller
  • Daniel Kroening
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7935)

Abstract

One approach for smt solvers to improve efficiency is to delegate reasoning to abstract domains. Solvers using abstract domains do not support interpolation and cannot be used for interpolation-based verification. We extend Abstract Conflict Driven Clause Learning (acdcl) solvers with proof generation and interpolation. Our results lead to the first interpolation procedure for floating-point logic and subsequently, the first interpolation-based verifiers for programs with floating-point variables. We demonstrate the potential of this approach by verifying a number of programs which are challenging for current verification tools.

Keywords

Model Check Interpolation Algorithm Abstract Interpretation Interpolation Procedure Proof Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brain, M., D’Silva, V., Haller, L., Griggio, A., Kroening, D.: An abstract interpretation of DPLL(T). In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 455–475. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In: Proc. of Formal Methods in Computer-Aided Design, pp. 69–76. IEEE Computer Society Press (2009)Google Scholar
  3. 3.
    Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in satisfiability modulo theories. ACM Transactions on Computational Logic 12(1), 7 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-C programs using SAT. Formal Methods in Systems Design 25(2-3), 105–127 (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: Proc. of Principles of Programming Languages, pp. 143–154 (2013)Google Scholar
  10. 10.
    D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with conflict-driven learning. In: Proc. of Tools and Algorithms for the Construction and Analysis of Systems, pp. 48–63 (2012)Google Scholar
  11. 11.
    Garoche, P.-L., Kahsai, T., Tinelli, C.: Invariant stream generators using automatic abstract transformers based on a decidable logic. CoRR, abs/1205.3758 (2012)Google Scholar
  12. 12.
    Griggio, A.: Effective word-level interpolation for software verification. In: Proc. of Formal Methods in Computer-Aided Design (2011)Google Scholar
  13. 13.
    Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with systematic abstraction. In: Proc. of Formal Methods in Computer-Aided Design, pp. 131–140 (2012)Google Scholar
  15. 15.
    Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-level. In: FMCAD, pp. 85–89. IEEE (2007)Google Scholar
  17. 17.
    Kroening, D., Weissenbacher, G.: Interpolation-based software verification with Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 573–578. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science 345(1), 101–121 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    McMillan, K.L.: Lazy abstraction with interpolants. In: LPAR-18 2012, pp. 123–136. Springer (2006)Google Scholar
  21. 21.
    Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)zbMATHCrossRefGoogle Scholar
  22. 22.
    Ponsini, O., Michel, C., Rueher, M.: Refining abstract interpretation based value analysis with constraint programming techniques. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 593–607. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Totla, N., Wies, T.: Complete instantiation-based interpolation. In: Proc. of Principles of Programming Languages, pp. 537–548. ACM Press (2013)Google Scholar
  24. 24.
    Truchet, C., Pelleau, M., Benhamou, F.: Abstract domains for constraint programming, with the example of octagons. In: Symbolic and Numeric Algorithms for Scientific Computing, pp. 72–79 (2010)Google Scholar
  25. 25.
    Zhang, L., Malik, S.: The quest for efficient Boolean satisfiability solvers. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 295–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Brain
    • 1
  • Vijay D’Silva
    • 3
  • Alberto Griggio
    • 2
  • Leopold Haller
    • 1
  • Daniel Kroening
    • 1
  1. 1.University of OxfordUK
  2. 2.Fondazione Bruno KesslerTrentoItaly
  3. 3.University of CaliforniaBerkeleyUSA

Personalised recommendations