Advertisement

Speech Enhancement: A Multivariate Empirical Mode Decomposition Approach

  • Jordi Solé-Casals
  • Esteve Gallego-Jutglà
  • Pere Martí-Puig
  • Carlos M. Travieso
  • Jesús B. Alonso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7911)

Abstract

Speech signals in real scenario ambient are usually mixed with some other signals, such as noise. This may interfere with posterior signal processing applied to the signals. In this work, a new technique of data denoising is presented using multivariate Empirical Mode Decomposition. Different SNR ratios are tested in order to study the evolution of the improvement of the recovered data. An improvement of the analyzed data is obtained with all the SNR levels tested.

Keywords

Speech enhancement multivariate EMD Speech processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N., Tung, C.C., Liu, H.H.: The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 903–995 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Khaldi, K., Boudraa, A., Bouchikhi, A., Alouane, M.T.: Speech Enhancement Via EMD. EURASIP Journal on Advances in Signal Processing 2008, 873204 (2008)CrossRefGoogle Scholar
  3. 3.
    Chatlani, N., Soraghan, J.J.: EMD-Based Filtering (EMDF) of Low-Frequency Noise for Speech Enhancement. IEEE Transactions on Audio, Speech, and Language Processing 20, 1158–1166 (2012)CrossRefGoogle Scholar
  4. 4.
    Li, J., Liu, F., Xu, H., Wang, F.: Speech Enhancement Algorithm Based on Hilbert-Huang and Wavelet. Informatics and Management Science III, 173–178 (2013)Google Scholar
  5. 5.
    Solé-Casals, J., Zaiats, V.: A Non-Linear VAD for Noisy Environments. Cognitive Computation 2, 191–198 (2010)CrossRefGoogle Scholar
  6. 6.
    Comas, C., Monte-Moreno, E., Solé-Casals, J.: A Robust Multiple Feature Approach to Endpoint Detection in Car Environment Based on Advanced Classifiers. Computational Intelligence and Bioinspired Systems, 1–10 (2005)Google Scholar
  7. 7.
    Shi, W., Zou, Y.: A Novel Instantaneous Frequency-Based Voice Activity Detection for Strong Noisy Speech, 956–959 (2012)Google Scholar
  8. 8.
    Comon, P., Jutten, C.: Handbook of blind source separation: Independent component analysis and applications. Academic press (2010)Google Scholar
  9. 9.
    Solé-Casals, J., Faundez-Zanuy, M.: Application of the Mutual Information Minimization to Speaker Recognition/Identification Improvement. Neurocomputing 69, 1467–1474 (2006)CrossRefGoogle Scholar
  10. 10.
    Ortega-Garcia, J., Gonzalez-Rodriguez, J., Marrero-Aguiar, V.: AHUMADA: A Large Speech Corpus in Spanish for Speaker Characterization and Identification. Speech Commun. 31, 255–264 (2000)CrossRefGoogle Scholar
  11. 11.
    Diez, P.F., Mut, V., Laciar, E., Torres, A., Avila, E.: Application of the Empirical Mode Decomposition to the Extraction of Features from EEG Signals for Mental Task Classification, 2579–2582 (2009)Google Scholar
  12. 12.
    Molla, M.K., Tanaka, T., Rutkowski, T., Cichocki, A.: Separation of EOG Artifacts from EEG Signals using Bivariate EMD, 562–565 (2010)Google Scholar
  13. 13.
    Ali Yener, M., Selin, A.: Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization. EURASIP Journal on Advances in Signal Processing 2011 (2011)Google Scholar
  14. 14.
    Rehman, N., Mandic, D.P.: Multivariate Empirical Mode Decomposition. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 466, 1291–1302 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jordi Solé-Casals
    • 1
  • Esteve Gallego-Jutglà
    • 1
  • Pere Martí-Puig
    • 1
  • Carlos M. Travieso
    • 2
  • Jesús B. Alonso
    • 2
  1. 1.Digital Technologies GroupUniversity of VicVicSpain
  2. 2.Signals and Communications Department, Institute for Technology Development and Innovation in Communications (IDeTIC)LPGA UniversityGran CanariaSpain

Personalised recommendations