Analysis of the Full Vibrational Dynamics of the LiNC/LiCN Molecular System

  • P. BenítezEmail author
  • J. C. Losada
  • R. M. Benito
  • F. Borondo
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 54)


A study of the LiNC/LiCN triatomic molecule vibrational dynamics including all three degrees of freedom (dof) using Frequency Map and Small Alignment Index (SALI) analysis is presented. SALI maps are computed as two-dimensional phase space representations, where its asymptotic values are represented in a color scale. These maps provide full information on the dynamical phase space structure of the system, regardless of its dimensionality. SALI results for the 3dof LiNC/LiCN are compared with 2dof results previously reported for this molecule by our group. A representation of the SALI values on the frequency space, that allows a deeper analysis of the dynamics of the system, is also studied.


Reference Trajectory Deviation Vector Stable Isomer Minimum Energy Path Vibrational Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support from MICINN-Spain under contract No. MTM2012-39101 is gratefully acknowledged.


  1. 1.
    Zewail, A. (ed.): The Chemical Bond: Structure and Dynamics. Academic, San Diego (1992)Google Scholar
  2. 2.
    Simó, C. (ed.): Hamiltonian Systems with Three or More Degrees of Freedom. NATO ASI Series C. Kluwer, Dordrecht (1999)zbMATHGoogle Scholar
  3. 3.
    Laskar, J.: Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys. D 67, 257 (1993)Google Scholar
  4. 4.
    Skokos, C., Antonopoulos, C., Bountis, T.C., Vrahatis, M.N.: Detecting order and chaos in Hamiltonian systems by the SALI method. J. Phys. A Math. Gen. 37, 6269 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Skokos, C., Bountis, T.C., Antonopoulos, C.: Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method. Phys. D 231, 30 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Losada, J.C., Giralda, C.G., Benito, R.M., Borondo, F.: Global dynamics of nonrigid triatomic molecular systems of three degrees of freedom. AIP Proc. 905, 249 (2007)CrossRefGoogle Scholar
  7. 7.
    Losada, J.C., Benito, R.M., Borondo, F.: Frequency map analysis of the 3D vibrational dynamics of the LiNC/LiCN molecular system. Eur. Phys. J. Spec. Top. 165, 183 (2008)CrossRefGoogle Scholar
  8. 8.
    Essers, R., Tennyson, J., Wormer, P.E.S.: An SCF potential energy surface for Lithium Cyanide. Chem. Phys. Lett. 89, 223 (1982)CrossRefGoogle Scholar
  9. 9.
    Henderson, J.R., Tennyson, J.: Very highly excited states of LiCN using a discrete variable representation. Mol. Phys. 69, 639 (1990); Borondo, F., Gomez–Llorente, J.M., Benito, R.M.: Theoretical methods for the analysis of spectra of highly vibrationally excited polyatomic molecules. Laser Chem. 12, 85 (1992); Borondo, F., Benito, R.M.: Dynamics and spectroscopy of highly excited molecules. In: Yurtsever, E. (ed.) Frontiers of Chemical Dynamics. NATO ASI Series C. Kluwer, Dordrecht, 1995; Prosmiti, R., Farantos, S.C., Guantes, R., Borondo, F., Benito, R.M.: A periodic orbit analysis od the vibrationally highly excited LiNC/LiCN: a comparison with quantum mechanics. J. Chem. Phys. 104, 2921 (1996); Arranz, F.J., Borondo, F., Benito, R.M.: Transition from order to chaos in molecular wave functions and spectra. J. Chem. Phys. 104, 6401 (1996); Arranz, F.J., Borondo, F., Benito, R.M.: Avoided crossings, scars and the transition to chaos. ibid. 107, 2395 (1997); Probability density distributions in phase space. J. Mol. Struct. (Theochem) 426, 87 (1998); Borondo, F., Zembekov, A.A., Benito, R.M.: Quantum manifestations of saddle node bifurcations. Chem. Phys. Lett. 246, 421 (1995); Saddle node bifurcations in the LiNC/LiCN molecular system. Classical aspects and quantum manifestations. J. Chem. Phys. 105, 5068 (1996); Semiclassical quantization of fragmented tori: application to saddle-node states of LiNC/LiCN. ibid. 107, 7934 (1997); Benito, R.M., Borondo, F.: Periodic orbits and quantum mechanics of molecular Hamiltonian systems. In: Simó, C. (ed.): Hamiltonian Systems with Three or More Degrees of Freedom. NATO ASI Series C, pp. 310–313. Kluwer, Dordrecht (1999); Borondo, F., Vergini, E.W., Zembekov, A.A., Benito, R.M.: Homoclinic motions in the vibrational spectra of floppy systems: the LiCN molecule. J. Chem. Phys. 122, 11101 (2005)Google Scholar
  10. 10.
    Benito, R.M., Borondo, F., Kim, J.H., Sumpter, B.G., Ezra, G.S.: Comparison of classical and quantum phase space structure of non-rigid molecules: LiCN. Chem. Phys. Lett. 161, 60 (1989)CrossRefGoogle Scholar
  11. 11.
    Arranz, F.J., Borondo, F., Benito, R.M.: Scar formation at the edge of the chaotic region. Phys. Rev. Lett. 80, 944 (1998)CrossRefGoogle Scholar
  12. 12.
    Losada, J.C., Estebaranz, J.M., Benito, R.M., Borondo, F.: Local frequency analysis and the structure of classical phase space of the LiNC/LiCN molecular system. J. Chem. Phys. 108, 63 (1998)CrossRefGoogle Scholar
  13. 13.
    Safi, Z.S., Losada, J.C., Benito, R.M., Borondo, F.: Frequency analysis of the molecular vibrations of HCP. J. Chem. Phys. 129, 164316 (2008)CrossRefGoogle Scholar
  14. 14.
    Arranz, F.J., Seidel, L., Giralda, C.G., Benito, R.M., Borondo, F.: Zeros of the Husimi function and quantum numbers in the HCP molecule. Phys. Rev. E 82(2), 026201 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Benítez
    • 1
    Email author
  • J. C. Losada
    • 1
  • R. M. Benito
    • 1
  • F. Borondo
    • 2
  1. 1.Grupo de Sistemas Complejos, and Departamento de Física y Mecánica, Escuela Técnica Superior de Ingenieros AgrónomosUniversidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Química, and Instituto de Ciencias Matemáticas (ICMAT)Universidad Autónoma de MadridMadridSpain

Personalised recommendations