Respondent Behavior Logging: An Opportunity for Online Survey Design

  • Jonas Sjöström
  • Mohammad Hafijur Rahman
  • Asma Rafiq
  • Ruth Lochan
  • Pär J. Ågerfalk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7939)


This work-in-progress paper introduces the concept of Respondent Behavior Logging (RBL), consisting of static and dynamic models that conceptualize respondent behavior when filling in online questionnaires. It is argued that web-based survey design may benefit from logging as a technique for evaluation, since such data may prove useful during re-design of questionnaires. Although other aspects of online surveys have attracted considerable attention both in industry and in literature, how the Web may leverage new and innovative techniques to support survey design is still underexplored. Some preliminary results are reported in the paper, and issues are raised regarding how to appropriately evaluate and demonstrate the qualities of the RBL concept as a means for survey re-design.


Questionnaire design online surveys evaluation behavior logging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ågerfalk, P.J.: Getting Pragmatic. European Journal of Information Systems 19(3), 251–256 (2010)CrossRefGoogle Scholar
  2. 2.
    Ågerfalk, P.J., Sjöström, J.: Sowing the seeds of self: A socio- pragmatic penetration of the web artefact. In: Proceedings of the 2nd International Pragmatic Web Conference, Tilburg, The Netherlands (2007)Google Scholar
  3. 3.
    Wyssusek, B.: Ontological Foundations of Conceptual Modelling. Scandinavian Journal of Information Systems 18(1), 63–80 (2006)Google Scholar
  4. 4.
    Conboy, K.: Agility from first principles: Reconstructing the concept of agility in information systems development. Information Systems Research 20(3), 329–354 (2009)CrossRefGoogle Scholar
  5. 5.
    Dewey, J.: Logic: The theory of inquiry. Henry Holt and Company, New York (1938)Google Scholar
  6. 6.
    Goldkuhl, G., Lyytinen, K.: A language action view of information systems. In: Ginzberg, M., Ross, C. (eds.) Proceedings of the 3rd International Conference on Information Systems (ICIS 1982), Ann Arbor, MI, pp. 13–29 (1982)Google Scholar
  7. 7.
    Gregor, S., Hevner, A.R.: Positioning and Presenting Design Science Research for Maximum Impact. To appear in forthcoming issue of Mis Quarterly (forthcoming)Google Scholar
  8. 8.
    Habermas, J.: The Theory of Communicative Action. Polity, Cambridge (1984)Google Scholar
  9. 9.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in Information Systems research. Mis Quarterly 28(1), 75–105 (2004)Google Scholar
  10. 10.
    Hirschheim, R., Klein, H., Lyytinen, K.: Information Systems Development and Data Modeling: Conceptual Foundations and Philosophical Foundations. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  11. 11.
    Holm, P.: On the design and usage of information technology and the structuring of communication and work. Doctoral Dissertation, Stockholm University, Sweden (1996)Google Scholar
  12. 12.
    Krosnick, J.A., Presser, S.: Question and Questionnaire Design. In: Marsden, P.V., Wright, J.D. (eds.) Handbook of Survey Research, 2nd edn., pp. 263–313. Emerald Group Publishing Limited (2010)Google Scholar
  13. 13.
    Lumsden, J., Morgan, W.: Online-Questionnaire Design: Establishing Guidelines and Evaluating Existing Support. In: Proceedings of the 16th Annual International Conference of the Information Resources Management Organization (IRMA 2005), vol. 31 (2005)Google Scholar
  14. 14.
    Martin, D., Wu, H., Alsaid, A.: Hidden Surveillance by Web Sites: Web Bugs in Contemporary Use. Communications of the ACM 46(12) (December 2003)Google Scholar
  15. 15.
    Newsted, P.R., Huff, S.L., Munro, M.C.: Survey Instruments in Information Systems. MIS Quarterly 22(4), 553–554 (1998)CrossRefGoogle Scholar
  16. 16.
    Searle, J.: Speech acts: An essay in the philosophy of language. Cambridge University Press, London (1969)CrossRefGoogle Scholar
  17. 17.
    Sivo, S.A., Saunders, C., Chang, Q., Jiang, J.J.: How Low Should You Go? Low Response Rates and the Validity of Inference in IS Questionnaire Research. Journal of the Association for Information Systems 7(6), 35–414 (2006)Google Scholar
  18. 18.
    Sjöström, J.: Designing Information Systems – A pragmatic account. Doctoral Dissertation, Uppsala University, Sweden (2010) ISBN: 978-91-506-2149-5Google Scholar
  19. 19.
    Venable, J., Pries-Heje, J., Baskerville, R.: A Comprehensive Framework for Evaluation in Design Science Research. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012. LNCS, vol. 7286, pp. 423–438. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Communications of the ACM 39(11), 86–95 (1996)CrossRefGoogle Scholar
  21. 21.
    Blumer, H.: Symbolic interactionism: Perspective and method. University of California Press (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonas Sjöström
    • 1
    • 2
  • Mohammad Hafijur Rahman
    • 1
    • 2
  • Asma Rafiq
    • 1
  • Ruth Lochan
    • 1
    • 2
  • Pär J. Ågerfalk
    • 1
  1. 1.Department of Informatics and MediaUppsala UniversityUppsalaSweden
  2. 2.Department of Public Health and Caring SciencesUppsala UniversityUppsalaSweden

Personalised recommendations