Advertisement

An OpenCCG-Based Approach to Question Generation from Concepts

  • Markus M. Berg
  • Amy Isard
  • Johanna D. Moore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7934)

Abstract

Dialogue systems are often regarded as being tedious and inflexible. We believe that one reason is rigid and inadaptable system utterances. A good dialogue system should automatically choose a formulation that reflects the user’s expectations. However, current dialogue system development environments only allow the definition of questions with unchangeable formulations. In this paper we present a new approach to the generation of system questions by only defining basic concepts. This is the basis for realising adaptive, user-tailored, and human-like system questions in dialogue systems.

Keywords

Question Generation Dialogue System Question Word Style Variation System Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldridge, J., Kruijff, G.J.M.: Multi-modal combinatory categorial grammar. In: Proceedings of the Tenth Conference on EACL, Stroudsburg, PA, USA, pp. 211–218 (2003)Google Scholar
  2. 2.
    Berg, M.M.: Survey on Spoken Dialogue Systems: User Expectations Regarding Style and Usability. In: XIV International PhD Workshop, Wisla, Poland (October 2012)Google Scholar
  3. 3.
    Berg, M.M., Düsterhöft, A., Thalheim, B.: Towards interrogative types in task-oriented dialogue systems. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 302–307. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Boyer, K.E., Piwek, P. (eds.): Proceedings of QG 2010: The Third Workshop on Question Generation, Pittsburgh (2010)Google Scholar
  5. 5.
    Bringert, B.: Programming language techniques for natural language applications (2008)Google Scholar
  6. 6.
    Brown, P., Levinson, S.C., Gumperz, J.J.: Politeness: Some Universals in Language Usage. Studies in Interactional Sociolinguistics. Cambridge University Press (1987)Google Scholar
  7. 7.
    Dautenhahn, K., Woods, S., Kaouri, C., Walters, M.L., Koay, K.L., Werry, I.: What is a robot companion - friend, assistant or butler?, pp. 1488–1493 (2005)Google Scholar
  8. 8.
    Gupta, S., Walker, M.A., Romano, D.M.: Generating politeness in task based interaction: An evaluation of the effect of linguistic form and culture. In: Proceedings of the Eleventh European Workshop on NLG, Stroudsburg, PA, USA, pp. 57–64 (2007)Google Scholar
  9. 9.
    Hockenmaier, J., Steedman, M.: CCGbank: User’s Manual. Tech. rep (May 2005)Google Scholar
  10. 10.
    Hockenmaier, J., Steedman, M.: CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank. Comput. Linguist. 33(3), 355–396 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Jokinen, K., McTear, M.F.: Spoken Dialogue Systems. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers (2009)Google Scholar
  12. 12.
    de Jong, M., Theune, M., Hofs, D.: Politeness and alignment in dialogues with a virtual guide. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Richland, SC, pp. 207–214 (2008)Google Scholar
  13. 13.
    Kruijff, G.J.M., White, M.: Specifying Grammars for OpenCCG: A Rough Guide (2005)Google Scholar
  14. 14.
    Looi, Q.E., See, S.L.: Applying politeness maxims in social robotics polite dialogue. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 189–190. ACM, New York (2012)CrossRefGoogle Scholar
  15. 15.
    Mairesse, F.: Learning to Adapt in Dialogue Systems: Data-driven Models for Personality Recognition and Generation. Ph.D. thesis, University of Sheffield (February 2008)Google Scholar
  16. 16.
    McTear, M.F., Raman, T.V.: Spoken Dialogue Technology: Towards the Conversational User Interface. Springer (2004)Google Scholar
  17. 17.
    Olney, A.M., Graesser, A.C., Person, N.K.: Question generation from concept maps. Dialogue and Discourse 3(2), 75–99 (2012)Google Scholar
  18. 18.
    Ou, S., Orasan, C., Mekhaldi, D., Hasler, L.: Automatic Question Pattern Generation for Ontology-based Question Answering. In: The Florida AI Research Society Conference, pp. 183–188 (2008)Google Scholar
  19. 19.
    Papasalouros, A.: Automatic generation of multiple-choice questions from domain ontologies. Engineer (Bateman 1997) (2008)Google Scholar
  20. 20.
    Raskutti, B., Zukerman, I.: Generating queries and replies during information-seeking interactions. Int. J. Hum.-Comput. Stud. 47(6), 689–734 (1997)CrossRefGoogle Scholar
  21. 21.
    Rus, V., Lester, J. (eds.): AIED 2009 Workshops Proceedings: The 2nd Workshop on Question Generation, Brighton (2009)Google Scholar
  22. 22.
    Steedman, M., Baldridge, J.: Non-Transformational Syntax. In: Combinatory Categorial Grammar, pp. 181–224. Wiley-Blackwell (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Markus M. Berg
    • 1
    • 2
  • Amy Isard
    • 3
  • Johanna D. Moore
    • 3
  1. 1.Department of EE & CSWismar UniversityGermany
  2. 2.Department of Computer ScienceKiel UniversityGermany
  3. 3.School of InformaticsUniversity of EdinburghScotland, UK

Personalised recommendations