Advertisement

Propositionalisation of Continuous Attributes beyond Simple Aggregation

  • Soufiane El Jelali
  • Agnès Braud
  • Nicolas Lachiche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7842)

Abstract

Existing propositionalisation approaches mainly deal with categorical attributes. Few approaches deal with continuous attributes. A first solution is then to discretise numeric attributes to transform them into categorical ones. Alternative approaches dealing with numeric attributes consist in aggregating them with simple functions such as average, minimum, maximum, etc. We propose an approach dual to discretisation that reverses the processing of objects and thresholds, and whose discretisation corresponds to quantiles. Our approach is evaluated thoroughly on artificial data to characterize its behaviour with respect to two attribute-value learners, and on real datasets.

Keywords

Propositionalisation Continuous attributes Aggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alphonse, E., Girschick, T., Buchwald, F., Kramer, S.: A numerical refinement operator based on multi-instance learning. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS (LNAI), vol. 6489, pp. 14–21. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS, pp. 561–568. MIT Press (2002)Google Scholar
  3. 3.
    Anthony, S., Frisch, A.M.: Generating numerical literals during refinement. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI), vol. 1297, pp. 61–76. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1-2), 285–297 (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Botta, M., Piola, R.: Refining numerical constants in first order logic theories. Mach. Learn. 38(1-2), 109–131 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1-2), 31–71 (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Džeroski, S., Lavrač, N. (eds.): Relational data mining. Springer (2001)zbMATHGoogle Scholar
  8. 8.
    Kalgi, S., Gosar, C., Gawde, P., Ramakrishnan, G., Gada, K., Iyer, C., Kiran, T.V.S., Srinivasan, A.: BET: An inductive logic programming workbench. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS (LNAI), vol. 6489, pp. 130–137. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Knobbe, A.J., de Haas, M., Siebes, A.: Propositionalisation and aggregates. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 277–288. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Krogel, M.-A., Wrobel, S.: Transformation-based learning using multirelational aggregation. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 142–155. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Krogel, M.A., Wrobel, S.: Facets of aggregation approaches to propositionalization. Work-in-Progress Session of the 13th Int. Conf. on ILP (2003)Google Scholar
  12. 12.
    Kuželka, O., Železný, F.: Hifi: Tractable propositionalization through hierarchical feature construction. In: Železný, F., Lavrač, N. (eds.) Late Breaking Papers, the 18th Int. Conf. on ILP (2008)Google Scholar
  13. 13.
    Kuželka, O., Železný, F.: Block-wise construction of acyclic relational features with monotone irreducibility and relevancy properties. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML. ACM Int. Conf. Proceeding Series, vol. 382, p. 72. ACM (2009)Google Scholar
  14. 14.
    Lachiche, N.: Propositionalization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning. Springer (2010)Google Scholar
  15. 15.
    Lahbib, D., Boullé, M., Laurent, D.: Prétraitement supervisé des variables numériques pour la fouille de données multi-tables. In: Lechevallier, Y., Melançon, G., Pinaud, B. (eds.) EGC. Revue des Nouvelles Technologies de l’Information, vol. RNTI-E-23, pp. 501–512. Hermann-Éditions (2012)Google Scholar
  16. 16.
    Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood (1994)Google Scholar
  17. 17.
    Lesbegueries, J., Lachiche, N., Braud, A., Puissant, A., Skupinski, G., Perret, J.: A platform for spatial data labelling in an urban context. In: Bocher, E., Neteler, M. (eds.) Geospatial Free and Open Source Software in the 21st Century. Lecture Notes in Geoinformation and Cartography, pp. 49–61. Springer (2012)Google Scholar
  18. 18.
    Muggleton, S.: Inverse entailment and progol. New Generation Computing 13(3-4), 245–286 (1995)CrossRefGoogle Scholar
  19. 19.
    Puissant, A., Skupinski, G., Lachiche, N., Braud, A., Perret, J.: Classification et évolution des tissus urbains à partir de données vectorielles. Revue Internationale de Géomatique 21(4), 513–532 (2011)CrossRefGoogle Scholar
  20. 20.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)Google Scholar
  21. 21.
    Vens, C., Ramon, J., Blockeel, H.: Refining aggregate conditions in relational learning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 383–394. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann (2005)Google Scholar
  23. 23.
    Zelezný, F., Lavrac, N.: Propositionalization-based relational subgroup discovery with RSD. Machine Learning 62(1-2), 33–63 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Soufiane El Jelali
    • 1
  • Agnès Braud
    • 1
  • Nicolas Lachiche
    • 1
  1. 1.LSIITUniversity of StrasbourgIllkirchFrance

Personalised recommendations