A Declarative Modeling Language for Concept Learning in Description Logics

  • Francesca Alessandra Lisi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7842)

Abstract

Learning in Description Logics (DLs) has been paid increasing attention over the last decade. Several and diverse approaches have been proposed which however share the common feature of extending and adapting previous work in Concept Learning to the novel representation framework of DLs. In this paper we present a declarative modeling language for Concept Learning in DLs which relies on recent results in the fields of Knowledge Representation and Machine Learning. Based on second-order DLs, it allows for modeling Concept Learning problems as constructive DL reasoning tasks where the construction of the solution to the problem may be subject to optimality criteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  2. 2.
    Baader, F.: Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In: Gottlob, G., Walsh, T. (eds.) IJCAI 2003: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 319–324. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  3. 3.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1-2), 353–367 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: Proc. of the 10th National Conf. on Artificial Intelligence, pp. 754–760. The AAAI Press / The MIT Press (1992)Google Scholar
  6. 6.
    Cohen, W.W., Hirsh, H.: Learnability of description logics. In: Haussler, D. (ed.) Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory, COLT 1992, Pittsburgh, PA, USA, July 27-29. ACM (1992)Google Scholar
  7. 7.
    Cohen, W.W., Hirsh, H.: The learnability of description logics with equality constraints. Machine Learning 17(2-3), 169–199 (1994)MATHCrossRefGoogle Scholar
  8. 8.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Thoretical and experimental results. In: Proc. of the 4th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1994), pp. 121–133. Morgan Kaufmann (1994)Google Scholar
  9. 9.
    Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: Second-order description logics: Semantics, motivation, and a calculus. In: Haarslev, V., Toman, D., Weddell, G.E. (eds.) Proceedings of the 23rd International Workshop on Description Logics (DL 2010), Waterloo, Ontario, Canada, May 4-7. CEUR Workshop Proceedings, vol. 573. CEUR-WS.org (2010)Google Scholar
  10. 10.
    Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: A unified framework for non-standard reasoning services in description logics. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of the 19th European Conference on Artificial Intelligence, ECAI 2010, Lisbon, Portugal, August 16-20. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 479–484. IOS Press (2010)Google Scholar
  11. 11.
    Colucci, S., Donini, F.M.: Inverting subsumption for constructive reasoning. In: Kazakov, Y., Lembo, D., Wolter, F. (eds.) Proceedings of the 2012 International Workshop on Description Logics, DL 2012, Rome, Italy, June 7-10. CEUR Workshop Proceedings, vol. 846. CEUR-WS.org (2012)Google Scholar
  12. 12.
    De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for data mining and machine learning. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15. AAAI Press (2010)Google Scholar
  13. 13.
    De Raedt, L., Nijssen, S., O’Sullivan, B., Van Hentenryck, P.: Constraint programming meets machine learning and data mining (dagstuhl seminar 11201). Dagstuhl Reports 1(5), 61–83 (2011)Google Scholar
  14. 14.
    Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In: IJCAI, pp. 90–96 (2005)Google Scholar
  16. 16.
    Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expressive description logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Frazier, M., Pitt, L.: CLASSIC learning. Machine Learning 25(2-3), 151–193 (1996)MATHCrossRefGoogle Scholar
  20. 20.
    Guns, T., Nijssen, S., De Raedt, L.: Evaluating pattern set mining strategies in a constraint programming framework. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 382–394. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: A constraint programming perspective. Artificial Intelligence 175(12-13), 1951–1983 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15(2), 81–91 (1950)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)CrossRefGoogle Scholar
  24. 24.
    Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(1), 193–217 (1994)MATHCrossRefGoogle Scholar
  25. 25.
    Küsters, R. (ed.): Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100. Springer, Heidelberg (2001)MATHGoogle Scholar
  26. 26.
    Küsters, R., Molitor, R.: Approximating most specific concepts in description logics with existential restrictions. AI Communications 15(1), 47–59 (2002)MathSciNetMATHGoogle Scholar
  27. 27.
    Lehmann, J., Hitzler, P.: Foundations of Refinement Operators for Description Logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning 78(1-2), 203–250 (2010)CrossRefGoogle Scholar
  29. 29.
    Lehmann, J.: DL-Learner: Learning Concepts in Description Logics. Journal of Machine Learning Research 10, 2639–2642 (2009)MATHGoogle Scholar
  30. 30.
    Lehmann, J., Haase, C.: Ideal Downward Refinement in the \(\mathcal{EL}\) Description Logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    McGuinness, D.L., Patel-Schneider, P.F.: Usability issues in knowledge representation systems. In: Mostow, J., Rich, C. (eds.) Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 1998, IAAI 1998, Madison, Wisconsin, USA, July 26-30, pp. 608–614. AAAI Press/The MIT Press (1998)Google Scholar
  32. 32.
    Mitchell, T.: Generalization as search. Artificial Intelligence 18, 203–226 (1982)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nebel, B. (ed.): Reasoning and Revision in Hybrid Representation Systems. LNCS, vol. 422. Springer, Heidelberg (1990)MATHGoogle Scholar
  34. 34.
    Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a constraint programming approach. In: Elder IV, J.F., Fogelman-Soulié, F., Flach, P.A., Zaki, M.J. (eds.) Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28-July 1, pp. 647–656. ACM (2009)Google Scholar
  35. 35.
    Reiter, R.: Equality and domain closure in first order databases. Journal of ACM 27, 235–249 (1980)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francesca Alessandra Lisi
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di Bari “Aldo Moro”Italy

Personalised recommendations