Operator Precedence ω-Languages

  • Federica Panella
  • Matteo Pradella
  • Violetta Lonati
  • Dino Mandrioli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7907)

Abstract

Recent literature extended the analysis of ω-languages from the regular ones to various classes of languages with “visible syntax structure”, such as visibly pushdown languages (VPLs). Operator precedence languages (OPLs), instead, were originally defined to support deterministic parsing and exhibit interesting relations with these classes of languages: OPLs strictly include VPLs, enjoy all relevant closure properties and have been characterized by a suitable automata family and a logic notation. We introduce here operator precedence ω-languages (ωOPLs), investigating various acceptance criteria and their closure properties. Whereas some properties are natural extensions of those holding for regular languages, others require novel investigation techniques.Application-oriented examples show the gain in expressiveness and verifiability offered by ωOPLs w.r.t. smaller classes.

Keywords

ω-languages Operator precedence languages Push-down automata Closure properties Infinite-state model checking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56(3) (2009)Google Scholar
  2. 2.
    Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel parsing of operator precedence grammars. Information Processing Letters (2013), doi:10.1016/j.ipl.2013.01.008Google Scholar
  3. 3.
    Barenghi, A., Viviani, E., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: PAPAGENO: a parallel parser generator for operator precedence grammars. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 264–274. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Büchi, J.R.: Weak Second-Order Arithmetic and Finite Automata. Mathematical Logic Quarterly 6(1-6), 66–92 (1960)MATHCrossRefGoogle Scholar
  5. 5.
    Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 214–226. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property. Journal of Computer and System Science 78(6), 1837–1867 (2012)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Floyd, R.W.: Syntactic Analysis and Operator Precedence. Journ. ACM 10(3), 316–333 (1963)MATHCrossRefGoogle Scholar
  9. 9.
    Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)Google Scholar
  10. 10.
    Lonati, V., Mandrioli, D., Pradella, M.: Precedence Automata and Languages. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 291–304. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Lonati, V., Mandrioli, D., Pradella, M.: Logic Characterization of Invisibly Structured Languages: the Case of Floyd Languages. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 307–318. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the Fourth Annual Symposium on Switching Circuit Theory and Logical Design, SWCT 1963, pp. 3–16. IEEE Computer Society, Washington, DC (1963)CrossRefGoogle Scholar
  13. 13.
    Panella, F.: Floyd languages for infinite words. Master’s thesis, Politecnico di Milano (2011), http://home.dei.polimi.it/panella
  14. 14.
    Panella, F., Pradella, M., Lonati, V., Mandrioli, D.: Operator precedence ω-languages. CoRR abs/1301.2476 (2013), http://arxiv.org/abs/1301.2476
  15. 15.
    Rabin, M.: Automata on infinite objects and Church’s problem. Regional conference series in mathematics. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society (1972)Google Scholar
  16. 16.
    Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Information and Control 54(1-2), 121–141 (1982)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B, pp. 133–191. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Federica Panella
    • 1
  • Matteo Pradella
    • 1
  • Violetta Lonati
    • 2
  • Dino Mandrioli
    • 1
  1. 1.DEIBPolitecnico di MilanoMilanoItaly
  2. 2.DIUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations