Advertisement

Ultimate Periodicity of b-Recognisable Sets: A Quasilinear Procedure

  • Victor Marsault
  • Jacques Sakarovitch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7907)

Abstract

It is decidable if a set of numbers, whose representation in a base b is a regular language, is ultimately periodic. This was established by Honkala in 1986.

We give here a structural description of minimal automata that accept an ultimately periodic set of numbers. We then show that it can be verified in linear time if a given minimal automaton meets this description.

This yields a O(n log(n)) procedure for deciding whether a general deterministic automaton accepts an ultimately periodic set of numbers.

Keywords

Linear Time Regular Language Chinese Remainder Theorem Free Monoid Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley (1974)Google Scholar
  2. 2.
    Allouche, J.-P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Almeida, J., Zeitoun, M.: Description and analysis of a bottom-up DFA minimization algorithm. Inf. Process. Lett. 107(2), 52–59 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Soc. Math. 1, 191–238 (1994); Corrigendum. Bull. Belg. Soc. Math. 1, 577 (1994) Google Scholar
  5. 5.
    Cobham, A.: On the base-dependance of the sets of numbers recognizable by finite automata. Math. Systems Theory 3, 186–192 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
  7. 7.
    Durand, F., Rigo, M.: On Cobham’s theorem, HAL-00605375. Pin, J.-E. (ed.) To Appear in AutoMathA Handbook. E.M.S. (2011)Google Scholar
  8. 8.
    Frougny, C.: Representation of numbers and finite automata. Math. Systems Theory 25, 37–60 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Frougny, C., Sakarovitch, J.: Number representation and finite automata. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135, pp. 34–107. Cambridge Univ. Press (2010)Google Scholar
  10. 10.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pacif. J. Math. 16, 285–296 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Honkala, J.: A decision method for the recognizability of sets defined by number systems. RAIRO Theor. Informatics and Appl. 20, 395–403 (1986)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lecomte, P., Rigo, M.: Abstract numeration systems. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135, pp. 108–162. Cambridge Univ. Press (2010)Google Scholar
  13. 13.
    Leroux, J.: A polynomial time Presburger criterion and synthesis for number decision diagrams. In: Logic in Computer Science 2005 (LICS 2005), pp. 147–156. IEEE Comp. Soc. Press (2005); New version at arXiv:cs/0612037v1Google Scholar
  14. 14.
    Marsault, V., Sakarovitch, J.: Ultimate periodicity of b-recognisable sets: a quasilinear procedure, http://arxiv.org/abs/1301.2691
  15. 15.
    Muchnik, A.: The definable criterion for definability in Presburger arithmetic and its applications. Theoret. Computer Sci. 290, 1433–1444 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009); Corrected English translation of Éléments de théorie des automates. Vuibert (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Victor Marsault
    • 1
  • Jacques Sakarovitch
    • 1
  1. 1.Telecom-ParisTech and CNRSParisFrance

Personalised recommendations