Composition Closure of ε-Free Linear Extended Top-Down Tree Transducers

  • Zoltán Fülöp
  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7907)


The expressive power of compositions of linear extended top-down tree transducers with and without regular look-ahead is investigated. In particular, the restrictions of ε-freeness, strictness, and nondeletion are considered. The composition hierarchy is finite for all ε-free variants of these transducers except for ε-free nondeleting linear extended top-down tree transducers. The least number of transducers needed for the full expressive power of arbitrary compositions is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle M. Dauchet, Université de Lille (1975)Google Scholar
  2. 2.
    Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP, pp. 74–86. Edinburgh University Press (1976)Google Scholar
  3. 3.
    Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput. Sci. 20(1), 33–93 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chiang, D.: An introduction to synchronous grammars. In: ACL, Association for Computational Linguistics (2006); part of a tutorial given with K. Knight Google Scholar
  5. 5.
    Dauchet, M.: Transductions de forêts — Bimorphismes de magmoïdes. Première thèse, Université de Lille (1977)Google Scholar
  6. 6.
    Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10(1), 289–303 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO definable. SIAM J. Comput. 32(4), 950–1006 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Engelfriet, J., Schmidt, E.M.: IO and OI I. J. Comput. System Sci. 15(3), 328–353 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fülöp, Z., Maletti, A.: Composition closure of linear extended top-down tree transducers (2013), manuscript available at
  10. 10.
    Fülöp, Z., Maletti, A., Vogler, H.: Preservation of recognizability for synchronous tree substitution grammars. In: ATANLP, pp. 1–9. Association for Computational Linguistics (2010)Google Scholar
  11. 11.
    Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam. Inform. 111(2), 163–202 (2011)zbMATHGoogle Scholar
  12. 12.
    Fülöp, Z., Vogler, H.: Syntax-Directed Semantics — Formal Models Based on Tree Transducers. Springer (1998)Google Scholar
  13. 13.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)Google Scholar
  14. 14.
    Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, ch. 1, pp. 1–68. Springer (1997)Google Scholar
  15. 15.
    Graehl, J., Hopkins, M., Knight, K., Maletti, A.: The power of extended top-down tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3), 391–427 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Maletti, A.: Compositions of extended top-down tree transducers. Inform. and Comput. 206(9–10), 1187–1196 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Maletti, A.: Tree transformations and dependencies. In: Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS, vol. 6878, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted tree transducers. In: ACL, pp. 1058–1066. Association for Computational Linguistics (2010)Google Scholar
  21. 21.
    Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3), 257–287 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4(4), 339–367 (1970)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zoltán Fülöp
    • 1
  • Andreas Maletti
    • 2
  1. 1.Department of Foundations of Computer ScienceUniversity of SzegedSzegedHungary
  2. 2.Institute for Natural Language ProcessingUniversity of StuttgartStuttgartGermany

Personalised recommendations