Advertisement

The Chomsky-Schützenberger Theorem for Quantitative Context-Free Languages

  • Manfred Droste
  • Heiko Vogler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7907)

Abstract

Weighted automata model quantitative aspects of systems like the consumption of resources during executions. Traditionally, the weights are assumed to form the algebraic structure of a semiring, but recently also other weight computations like average have been considered. Here, we investigate quantitative context-free languages over very general weight structures incorporating all semirings, average computations, lattices. In our main result, we derive the Chomsky-Schützenberger Theorem for such quantitative context-free languages, showing that each arises as the image of the intersection of a Dyck language and a recognizable language under a suitable morphism. Moreover, we show that quantitative context-free languages are expressively equivalent to a model of weighted pushdown automata. This generalizes results previously known only for semirings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 111–174. Springer (1997)Google Scholar
  2. 2.
    Bar–Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure grammars. Z. Phonetik. Sprach. Komm. 14, 143–172 (1961)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs on Theoretical Computer Science, vol. 12. Springer (1988)Google Scholar
  4. 4.
    Birkhoff, G.: Lattice Theory. AMS (1967)Google Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. ACM Transactions on Computational Logic 11(4), Article 23 (2010)Google Scholar
  6. 6.
    Chatterjee, K., Doyen, L., Henzinger, T.: Expressiveness and closure properties for quantitative languages. In: LICS 2009, pp. 199–208. IEEE Comp. Soc. (2009)Google Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Velner, Y.: Mean-payoff pushdown games. In: 27th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 195–204 (2012)Google Scholar
  9. 9.
    Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118–161. North-Holland (1963)Google Scholar
  10. 10.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2), 69–86 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 537–548. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoid. Intern. J. of Foundations of Comp. Science 22, 1829–1844 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Droste, M., Stüber, T., Vogler, H.: Weighted finite automata over strong bimonoids. Information Sciences 180, 156–166 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary bounded lattices. Theoretical Computer Science 418, 14–36 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Eilenberg, S.: Automata, Languages, and Machines – Volume A. Pure and Applied Mathematics, vol. 59. Academic Press (1974)Google Scholar
  16. 16.
    Golan, J.S.: Semirings and their Applications. Kluwer Acad. Publ. (1999)Google Scholar
  17. 17.
    Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (2003)zbMATHGoogle Scholar
  18. 18.
    Hulden, M.: Parsing CFGs and PCFGs with a Chomsky-Schützenberger representation. In: Vetulani, Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 151–160. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Kozen, D.: Automata and Computability. Springer (1997)Google Scholar
  20. 20.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monogr. Theoret. Comput. Sci. EATCS Ser., vol. 5. Springer (1986)Google Scholar
  21. 21.
    Meinecke, I.: Valuations of weighted automata: Doing it in a rational way. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 309–346. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Okhotin, A.: Non-erasing variants of the Chomsky-Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, ch. 7, pp. 257–311. Springer (2009)Google Scholar
  24. 24.
    Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application to interprocedural dataflow analysis. Science of Programming 58, 206–263 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs in Computer Science. Springer (1978)Google Scholar
  26. 26.
    Schützenberger, M.P.: On the definition of a family of automata. Inf. and Control 4, 245–270 (1961)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manfred Droste
    • 1
  • Heiko Vogler
    • 2
  1. 1.Institute of Computer ScienceLeipzig UniversityLeipzigGermany
  2. 2.Department of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations