Advertisement

Ultrametric Finite Automata and Turing Machines

  • Rūsiņš Freivalds
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7907)

Abstract

We introduce a notion of ultrametric automata and Turing machines using p-adic numbers to describe random branching of the process of computation. These automata have properties similar to the properties of probabilistic automata but complexity of probabilistic automata and complexity of ultrametric automata can differ very much.

Keywords

Riemann Surface Prime Number Turing Machine Nonnegative Real Number Ultrametric Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablayev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be More Effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  2. 2.
    Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Mat. Sem. Univ. Hamburg, B.5, 353–363 (1927)Google Scholar
  3. 3.
    Dragovich, B., Dragovich, A.: A p-Adic Model of DNA Sequence and Genetic Code. p-Adic Numbers, Ultrametric Analysis, and Applications 1(1), 34–41 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory, pp. 473–503. North-Holland, Amsterdam (1999)CrossRefGoogle Scholar
  5. 5.
    Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. 6.
    Freivalds, R.: How to Simulate Free Will in a Computational Device. ACM Computing Surveys 31(3), 15 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Freivalds, R.: Ultrametric automata and Turing machines. In: Voronkov, A. (ed.) Turing-100. EPiC Series, vol. 10, pp. 98–112. EasyChair (2012)Google Scholar
  9. 9.
    Garret, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper Saddle River (2004)Google Scholar
  10. 10.
    Gouvea, F.Q.: p-adic Numbers: An Introduction (Universitext), Springer, 2nd edn. Springer (1983)Google Scholar
  11. 11.
    Hirvensalo, M.: Quantum Computing. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  12. 12.
    Khrennikov, A.Y.: Non Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer Academic Publishers (1997)Google Scholar
  13. 13.
    Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edn. Graduate Texts in Mathematics, vol. 58. Springer (1984)Google Scholar
  14. 14.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)MathSciNetGoogle Scholar
  15. 15.
    Kozyrev, S.V.: Ultrametric Analysis and Interbasin Kinetics. p-Adic Mathematical Physics. In: Proc. of the 2nd International Conference on p-Adic Mathematical Physics, American Institute Conference Proceedings, vol. 826, pp. 121–128 (2006)Google Scholar
  16. 16.
    Madore, D.A.: A first introduction to p-adic numbers, http://www.madore.org/~david/math/padics.pdf
  17. 17.
    Turakainen, P.: Generalized Automata and Stochastic Languages. Proceedings of the American Mathematical Society 21(2), 303–309 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1995)Google Scholar
  19. 19.
    Weyl, H.: The concept of a Riemann surface. Dover Publications, New York (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rūsiņš Freivalds
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLatvia

Personalised recommendations