Generating Uncertain Networks Based on Historical Network Snapshots

  • Meng Han
  • Mingyuan Yan
  • Jinbao Li
  • Shouling Ji
  • Yingshu Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7936)


Imprecision, incompleteness and dynamic exist in wide range of network applications. It is difficult to decide the uncertainty relationship among nodes since traditional models do not make sense on uncertain networks, and the inherent computational complexity of problems with uncertainty is always intractable. In this paper, we study how to capture the uncertainty in networks by modeling a series snapshots of networks to an uncertain graph. Since the large number of possible instantiations of an uncertain network, a novel sampling scheme is proposed which enables the development of efficient algorithm to measure in uncertain networks; considering the practical of neighborhood relationship in real networks, a framework is introduced to transform the uncertain networks into deterministic weight networks where the weights on edges can be measured as Jaccard-like index. The comprehensive experimental evaluation on real data demonstrates the effectiveness and efficiency of our algorithms.


Data mining Snapshot Uncertain graph Social networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Lancichinetti, A., Fortunato, S.: Community detection algorithms: A comparative analysis. Phys. Rev. E 80, 56–117 (2009)Google Scholar
  3. 3.
    Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)Google Scholar
  4. 4.
    Xu, K., Zhang, X.: Mining Community in Mobile Social Network. Procedia Engineering 29, 3080–3084 (2012)CrossRefGoogle Scholar
  5. 5.
    Hintsanen, P., Toivonen, H.: Finding reliable subgraphs from large probabilistic graphs. Data Min. Knowl. Disc. 17(1), 3–23 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zou, Z., Li, J., Gao, H., Zhang, S.: Mining Frequent Subgraph Patterns from Uncertain Graph Data. IEEE Trans. on Knowl. and Data Eng. 22(9), 1203–1218 (2010)CrossRefGoogle Scholar
  7. 7.
    Bortner, D., Han, J.: Progressive clustering of networks using structure-connected order of traversal. In: IEEE The International Conference on Data Engineering ICDE, pp. 653–656 (2010)Google Scholar
  8. 8.
    Burton, S., Morris, R., Dimond, M., Hansen, J., Giraud-Carrier, C., West, J., Hanson, C., Barnes, M.: Public health community mining in YouTube. In: Proceedings of the 2nd ACM SIGHIT Symposium on International Health Informatics, pp. 81–90 (2012)Google Scholar
  9. 9.
    Jin, R., Liu, L., Aggarwal, C.C.: Discovering highly reliable subgraphs in uncertain graphs. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2011, pp. 992–1000 (2011)Google Scholar
  10. 10.
    Yuan, Y., Chen, L., Wang, G.: Efficiently answering probability threshold-based shortest path queries over uncertain graphs. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 155–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Jin, R., Liu, L., Ding, B., Wang, H.: Distance-constraint reachability computation in uncertain graphs. Proceedings of the VLDB Endowment 4(9), 551–562 (2011)Google Scholar
  12. 12.
    Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: K-nearest neighbors in uncertain graphs. Proceedings of the VLDB Endowment 3(1-2), 997–1008 (2010)Google Scholar
  13. 13.
    Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics 23(4), 493–507 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ross, S.M.: Introduction to probability models. Academic Press (2009)Google Scholar
  16. 16.
    Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Transactions on Knowledge and Data Engineering 21(5), 609–623 (2009)CrossRefGoogle Scholar
  17. 17.
    Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
  19. 19.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Meng Han
    • 1
  • Mingyuan Yan
    • 1
  • Jinbao Li
    • 2
  • Shouling Ji
    • 1
  • Yingshu Li
    • 1
    • 2
  1. 1.Department of Computer ScienceGeorgia State UniversityUSA
  2. 2.School of Computer Science and TechnologyHeilongjiang UniversityChina

Personalised recommendations