A New Model for Product Adoption over Social Networks

  • Lidan Fan
  • Zaixin Lu
  • Weili Wu
  • Yuanjun Bi
  • Ailian Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7936)

Abstract

Building upon the observation that individuals’ decisions to purchase a product are influenced by recommendations from their friends as well as their own preferences, in our work, we propose a new model that factors in people’s preferences for a product and the number of his/her neighbors that have adopted this product. In our model, as in related ones, beginning with an “active” seed set (adopters), an adoption action diffuses in a cascade fashion based on a stochastic rule. We demonstrate that under this model, maximizing individuals’ adoption of a product, called the product adoption maximization (PAM) problem, is NP-hard, and the objective function for product adoption is sub-modular for time T (T = 1, 2) when the function for estimating the influence coming from neighbors is sub-linear. Hence, a natural greedy algorithm guarantees an approximation. Furthermore, we show that it is hard to approximate the PAM problem when the function for estimating the influence coming from neighbors is not sub-linear.

Keywords

Influence Diffusion Product Adoption Personal Preference Viral Marketing Social Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, J., Reinegen, P.: Social ties and word-of-mouth referral behavior. Journal of Consumer Research 14, 350–362 (1987)CrossRefGoogle Scholar
  2. 2.
    Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Academy of Marketing Science Review (2001)Google Scholar
  3. 3.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)CrossRefGoogle Scholar
  4. 4.
    Richardson, M., Domingos, V.: Mining knowledge-sharing sites for viral marketing. In: KDD, pp. 61–70 (2002)Google Scholar
  5. 5.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD, pp. 57–66 (2001)Google Scholar
  6. 6.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 137–146 (2003)Google Scholar
  7. 7.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: AAAI, pp. 1371–1376 (2007)Google Scholar
  10. 10.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD (2009)Google Scholar
  11. 11.
    Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: Proceedings of the 10th IEEE International Conference on Data Mining, ICDM 2010, pp. 88–97 (2010)Google Scholar
  12. 12.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1029–1038 (2010)Google Scholar
  13. 13.
    Lu, Z., Zhang, W., Wu, W., Fu, B., Du, D.: Approximation and inapproximation for the influence maximization problem in social networks under deterministic linear threshold model. In: ICDCSW, pp. 160–165 (2011)Google Scholar
  14. 14.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Coste effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2007), pp. 420–429 (2007)Google Scholar
  15. 15.
    Bhagat, S., Goyal, A., Lakshmanan, L.V.S.: Maximizing product adoption in social networks. In: Web Search and Data Mining, WSDM (2012)Google Scholar
  16. 16.
    Kimura, M., Saito, K., Motoda, H.: Efficient estimation of influence functions for SIS model on social networks. In: Proc. of the 21st International Joint Conference on Artificial Intelligence, pp. 2046–2051 (2009)Google Scholar
  17. 17.
    Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming 14, 265–294 (1978)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Bohlen, J.M., Beal, G.M.: The diffusion process. Spl. Report No. 18, Agri. Extn. Serv., Iowa State College (1957)Google Scholar
  19. 19.
    Kalish, S.: A new product adoption model with price, advertising, and uncertainty. Management Science 31(12) (1985)Google Scholar
  20. 20.
    Fan, L., Lu, Z., Wu, W., Thuraisingham, B., Ma, H., Bi, Y.: Least cost rumor blocking in social networks. In: Proceedings of the 33rd International Conference on Distributed Computing Systems, ICDCS (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lidan Fan
    • 1
  • Zaixin Lu
    • 1
  • Weili Wu
    • 1
  • Yuanjun Bi
    • 1
  • Ailian Wang
    • 2
  1. 1.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA
  2. 2.Taiyuan Institute of TechnologyChina

Personalised recommendations