Approximating the Minimum Independent Dominating Set in Perturbed Graphs

  • Weitian Tong
  • Randy Goebel
  • Guohui Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7936)


We investigate the minimum independent dominating set in perturbed graphs \({\mathfrak g}(G, p)\) of input graph G = (V, E), obtained by negating the existence of edges independently with a probability p > 0. The minimum independent dominating set (MIDS) problem does not admit a polynomial running time approximation algorithm with worst-case performance ratio of n 1 − ε for any ε > 0. We prove that the size of the minimum independent dominating set in \({\mathfrak g}(G, p)\), denoted as \(i({\mathfrak g}(G, p))\), is asymptotically almost surely in Θ(log|V|). Furthermore, we show that the probability of \(i({\mathfrak g}(G, p)) \ge \sqrt{\frac{4|V|}{p}}\) is no more than 2− |V|, and present a simple greedy algorithm of proven worst-case performance ratio \(\sqrt{\frac{4|V|}{p}}\) and with polynomial expected running time.


Independent set independent dominating set dominating set approximation algorithm perturbed graph smooth analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bollobás, B.: Random Graphs. Academic Press, New York (1985)zbMATHGoogle Scholar
  2. 2.
    Bollobás, B.: The chromatic number of random graphs. Combinatorica 8, 49–55 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Feige, U.: A threshold of for approximating set cover. Journal of the ACM 45, 634–652 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  5. 5.
    Halldórsson, M.M.: Approximating the minimum maximal independence number. Information Processing Letters 46, 169–172 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kučera, L.: The greedy coloring is a bad probabilistic algorithm. Journal of Algorithms 12, 674–684 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Łuczak, T.: The chromatic number of random graphs. Combinatorica 11, 45–54 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Manthey, B., Plociennik, K.: Approximating independent set in perturbed graphs. Discrete Applied Mathematics (2012) (in press)Google Scholar
  9. 9.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-constant error-probability PCP characterization of NP. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC), pp. 475–484 (1997)Google Scholar
  10. 10.
    Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51, 385–463 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Spielman, D.A., Teng, S.-H.: Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Communications of the ACM 52, 76–84 (2009)CrossRefGoogle Scholar
  12. 12.
    Wang, C.: The independent domination number of random graph. Utilitas Mathematica 82, 161–166 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wieland, B., Godbole, A.P.: On the domination number of a random graph. The Electronic Journal of Combinatorics 8, #R37 (2001)MathSciNetGoogle Scholar
  14. 14.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3, 103–128 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Weitian Tong
    • 1
  • Randy Goebel
    • 1
  • Guohui Lin
    • 1
  1. 1.Department of Computing ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations