From Preemptive to Non-preemptive Speed-Scaling Scheduling

  • Evripidis Bampis
  • Alexander Kononov
  • Dimitrios Letsios
  • Giorgio Lucarelli
  • Ioannis Nemparis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7936)

Abstract

We are given a set of jobs, each one specified by its release date, its deadline and its processing volume (work), and a single (or a set of) speed-scalable processor(s). We adopt the standard model in speed-scaling in which if a processor runs at speed s then the energy consumption is sα units of energy per time unit, where α > 1. Our goal is to find a schedule respecting the release dates and the deadlines of the jobs so that the total energy consumption is minimized. While most previous works have studied the preemptive case of the problem, where a job may be interrupted and resumed later, we focus on the non-preemptive case where once a job starts its execution, it has to continue until its completion without any interruption. As the preemptive case is known to be polynomially solvable for both the single-processor and the multiprocessor case, we explore the idea of transforming an optimal preemptive schedule to a non-preemptive one. We prove that the preemptive optimal solution does not preserve enough of the structure of the non-preemptive optimal solution, and more precisely that the ratio between the energy consumption of an optimal non-preemptive schedule and the energy consumption of an optimal preemptive schedule can be very large even for the single-processor case. Then, we focus on some interesting families of instances: (i) equal-work jobs on a single-processor, and (ii) agreeable instances in the multiprocessor case. In both cases, we propose constant factor approximation algorithms. In the latter case, our algorithm improves the best known algorithm of the literature. Finally, we propose a (non-constant factor) approximation algorithm for general instances in the multiprocessor case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S.: Energy-efficient algorithms. Communications of ACM 53, 86–96 (2010)CrossRefGoogle Scholar
  2. 2.
    Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with migration: extended abstract. In: SPAA, pp. 279–288. ACM (2011)Google Scholar
  3. 3.
    Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: SPAA, pp. 289–298. ACM (2007)Google Scholar
  4. 4.
    Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel processors with migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Antoniadis, A., Huang, C.-C.: Non-preemptive speed scaling. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 249–260. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Bampis, E., Letsios, D., Lucarelli, G.: Green scheduling, flows and matchings. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 106–115. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Bampis, E., Letsios, D., Milis, I., Zois, G.: Speed scaling for maximum lateness. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 25–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors with migration. In: ISPA, pp. 153–161. IEEE (2008)Google Scholar
  9. 9.
    Bunde, D.P.: Power-aware scheduling for makespan and flow. In: SPAA, pp. 190–196. ACM (2006)Google Scholar
  10. 10.
    Chan, H.-L., Chan, W.-T., Lam, T.W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.: Energy efficient online deadline scheduling. In: SODA, pp. 795–804 (2007)Google Scholar
  11. 11.
    Chen, J.-J., Hsu, H.-R., Chuang, K.-H., Yang, C.-L., Pang, A.-C., Kuo, T.-W.: Multiprocessor energy-efficient scheduling with task migration considerations. In: ECTRS, pp. 101–108 (2004)Google Scholar
  12. 12.
    Greiner, G., Nonner, T., Souza, A.: The bell is ringing in speed-scaled multiprocessor scheduling. In: SPAA, pp. 11–18. ACM (2009)Google Scholar
  13. 13.
    Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34, 144–162 (1987)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM Journal on Computing 35, 658–671 (2006)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence constraints. Theory of Computing Systems 43, 67–80 (2008)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: FOCS, pp. 374–382 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Evripidis Bampis
    • 1
  • Alexander Kononov
    • 2
  • Dimitrios Letsios
    • 1
    • 3
  • Giorgio Lucarelli
    • 1
    • 3
  • Ioannis Nemparis
    • 1
    • 4
  1. 1.LIP6Université Pierre et Marie CurieFrance
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia
  3. 3.IBISCUniversité d’ÉvryFrance
  4. 4.Dept. of Informatics and TelecommunicationsNKUAAthensGreece

Personalised recommendations