Random Methods for Parameterized Problems

  • Qilong Feng
  • Jianxin Wang
  • Shaohua Li
  • Jianer Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7936)

Abstract

In this paper, we study the random methods for parameterized problems. For the Parameterized P2-Packing problem, by randomly partitioning the vertices, a randomized parameterized algorithm of running time O*(6.75k) is obtained, improving the current best result O*(8k). For the Parameterized Co-Path Packing problem, we study the kernel and randomized algorithm for the degree-bounded instance, and then by using the iterative compression technique, a randomized algorithm of running time O*(3k) is given for the Parameterized Co-Path Packing problem, improving the current best result O*(3.24k).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A Linear Kernel for Co-Path/Cycle Packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 90–102. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Chen, J., Lu, S.: Improved parameterized set splitting algorithms: A probabilistic approach. Algorithmica 54(4), 472–489 (2008)CrossRefGoogle Scholar
  3. 3.
    Chen, J., Lu, S., Sze, S.H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 298–307 (2007)Google Scholar
  4. 4.
    Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. Biol. 4, e1000234 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Bontridder, K., Halldórsson, B., Lenstra, J., Ravi, R., Stougie, L.: Approximation algorithms for the test cover problem. Math. Program., Ser. B 98, 477–491 (2003)MATHCrossRefGoogle Scholar
  6. 6.
    Fellows, M., Heggernes, P., Rosamond, F., Sloper, C., Telle, J.A.: Finding k disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Fernau, H., Raible, D.: A parameterized perspective on packing paths of length two. Journal of Combinatorial Optimization 18(4), 319–341 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Feng, Q., Wang, J., Chen, J.: Matching and P 2-Packing: Weighted Versions. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 343–353. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Fujito, T.: Approximating node-deletion problems for matroidal properties. J. Algorithms 31, 211–227 (1999)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. Discrete Appl. Math. 154, 971–979 (2006)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC 2011), pp. 469–478 (2011)Google Scholar
  12. 12.
    Marx, D.: Randomized Techniques for Parameterized Algorithms. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, p. 2. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Prieto, E., Sloper, C.: Looking at the stars. Theoretical Computer Science 351, 437–445 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qilong Feng
    • 1
  • Jianxin Wang
    • 1
  • Shaohua Li
    • 1
  • Jianer Chen
    • 1
    • 2
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaP.R. China
  2. 2.Department of Computer Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations