Randomized Algorithms for Removable Online Knapsack Problems

  • Xin Han
  • Yasushi Kawase
  • Kazuhisa Makino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7924)


In this paper, we study removable online knapsack problem. The input is a sequence of items e 1,e 2,…,e n , each of which has a weight and a value. Given the ith item e i , we either put e i into the knapsack or reject it. When e i is put into the knapsack, some items in the knapsack are removed with no cost if the sum of the weight of e i and the total weight in the current knapsack exceeds the capacity of the knapsack. Our goal is to maximize the profit, i.e., the sum of the values of items in the last knapsack. We show a randomized 2-competitive algorithm despite there is no constant competitive deterministic algorithm. We also give a lower bound 1 + 1/e ≈ 1.368. For the unweighted case, i.e., the value of each item is equal to the weight, we propose a 10/7-competitive algorithm and give a lower bound 1.25.


Feasible Solution Input Sequence Knapsack Problem Competitive Ratio Online Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling banner ads: Online algorithms with buyback. In: Proceedings of 4th Workshop on Ad Auctions (2008)Google Scholar
  3. 3.
    Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: Online algorithms with cancellations. In: ACM Conference on Electronic Commerce, pp. 61–70 (2009)Google Scholar
  4. 4.
    Buchbinder, N., Naor, J(S.): Online primal-dual algorithms for covering and packing problems. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 689–701. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual approach. In: Foundations of Computer Science, pp. 293–304 (2006)Google Scholar
  6. 6.
    Han, X., Kawase, Y., Makino, K.: Online knapsack problem with removal cost. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 61–73. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Han, X., Makino, K.: Online minimization knapsack problem. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 182–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Han, X., Makino, K.: Online removable knapsack with limited cuts. Theoretical Computer Science 411, 3956–3964 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ito, H., Kiyoshima, S., Yoshida, Y.: Constant-time approximation algorithms for the knapsack problem. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 131–142. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 293–305. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Iwama, K., Zhang, G.: Optimal resource augmentations for online knapsack. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 180–188. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Kellerer, H., Mansini, R., Speranza, M.G.: Two linear approximation algorithms for the subset-sum problem. European Journal of Operational Research 120, 289–296 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)Google Scholar
  14. 14.
    Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. Journal of Algorithms 29(2), 277–305 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Mathematical Programming 68, 73–104 (1995)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Yao, A.: Probabilistic computations: Toward a unified measure of complexity. In: 18th Annual Symposium on Foundations of Computer Science, pp. 222–227. IEEE (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xin Han
    • 1
  • Yasushi Kawase
    • 2
  • Kazuhisa Makino
    • 3
  1. 1.Dalian University of TechnologyChina
  2. 2.University of TokyoJapan
  3. 3.Kyoto UniversityJapan

Personalised recommendations