Advertisement

Arbitrated Quantum Signature Schemes: Attacks and Security

  • Xiangfu Zou
  • Daowen Qiu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7924)

Abstract

In this paper, we first summarize the attacks on the existing arbitrated quantum signature (AQS) schemes and then present a valid forgery attack. Also, we discuss the effectiveness of these attacks and analyze the reasons for these schemes suffered attacks. Moreover, we propose an AQS scheme which can resist all existent attacks. The proposed AQS scheme can preserve all merits in the previous AQS schemes such as it can sign the known and unknown quantum messages. To achieve higher security of AQS, we also construct a strong quantum one-time pads encryption which is applied to improve the AQS schemes.

Keywords

Quantum cryptography digital signature arbitrated quantum signature security attacks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error. In: Proceedings of the twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 176–188. ACM (1997)Google Scholar
  2. 2.
    Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pp. 449–458. IEEE (2002)Google Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68(21), 3121–3124 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE (1984)Google Scholar
  5. 5.
    Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Physical Review A 79(3), 032341 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Physical Review Letters 99(14), 140501 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Physical Review A 67(4), 042317 (2003)Google Scholar
  8. 8.
    Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: The role of imperfect local operations in quantum communication. Physical Review Letters 81(26), 5932–5935 (1998)Google Scholar
  9. 9.
    Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Physical Review Letters 87(16), 167902 (2001)CrossRefGoogle Scholar
  10. 10.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Physics Letters A 351(1), 23–25 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. ArXiv:quant-ph/1106.5318 (2011)Google Scholar
  12. 12.
    Curty, M., Lütkenhaus, N.: Comment on“Arbitrated quantum-signature scheme”. Physical Review A 77(4), 046301 (2008)Google Scholar
  13. 13.
    Curty, M., Santos, D.J., Pérez, E., García-Fernández, P.: Qubit authentication. Physical Review A 66(2), 022301 (2002)Google Scholar
  14. 14.
    Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against trojan horse attack. ArXiv:quant-ph/0508168 (2005)Google Scholar
  15. 15.
    Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 414, 413 (2001)CrossRefGoogle Scholar
  16. 16.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Physical Review Letters 67(6), 661–663 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Physical Review A 84(2), 022344 (2011)Google Scholar
  18. 18.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Reviews of Modern Physics 74(1), 145–195 (2002)CrossRefGoogle Scholar
  19. 19.
    Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “Security analysis and improvements of arbitrated quantum signature schemes”. Physical Review A 85(5), 056301 (2012)Google Scholar
  20. 20.
    Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics 41(3), 599–627 (2007)Google Scholar
  21. 21.
    Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Physical Review Letters 75(24), 4337–4341 (1995)CrossRefGoogle Scholar
  22. 22.
    Lau, F., Rubin, S.H., Smith, M.H., Trajkovic, L.: Distributed denial of service attacks. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2275–2280. IEEE (2000)Google Scholar
  23. 23.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Physical Review A 79(5), 054307 (2009)Google Scholar
  24. 24.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)CrossRefGoogle Scholar
  25. 25.
    Mayers, D.: Unconditional security in quantum cryptography. Journal of the ACM (JACM) 48(3), 351–406 (2001)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 56–65. IEEE (1996)Google Scholar
  27. 27.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters 85(2), 441–444 (2000)CrossRefGoogle Scholar
  28. 28.
    Sun, Z., Du, R., Long, D.: Improving the security of arbitrated quantum signature protocols. ArXiv:quant-ph/1107.2459 (2011)Google Scholar
  29. 29.
    Zeng, G.: Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ”. Physical Review A 78(1), 016301 (2008)Google Scholar
  30. 30.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Physical Review A 65(4), 042312 (2002)Google Scholar
  31. 31.
    Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Physical Review A 82(4), 042325 (2010)Google Scholar
  32. 32.
    Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Physical Review A 79(5), 052312 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiangfu Zou
    • 1
    • 2
  • Daowen Qiu
    • 2
    • 3
  1. 1.School of Mathematics and Computational ScienceWuyi UniversityJiangmenChina
  2. 2.Department of Computer ScienceSun Yat-sen UniversityGuangzhouChina
  3. 3.SQIG–Instituto de Telecomunicações, Departamento de Matemática, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal

Personalised recommendations