Fixed-Parameter Tractability of Workflow Satisfiability in the Presence of Seniority Constraints

  • J. Crampton
  • R. Crowston
  • G. Gutin
  • M. Jones
  • M. S. Ramanujan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7924)

Abstract

The workflow satisfiability problem is concerned with determining whether it is possible to find an allocation of authorized users to the steps in a workflow in such a way that all constraints are satisfied. The problem is NP-hard in general, but is known to be fixed-parameter tractable for certain classes of constraints. In this paper, we provide the first results that establish fixed-parameter tractability of the satisfiability problem when the constraints are asymmetric. We also establish a lower bound for the hardness of the workflow satisfiability problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.: A linear time algorithm for finding tree decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bodlaender, H., Koster, A.: Treewidth computations I. Upper bounds. Information and Computation 208(3), 259–275 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Crampton, J., Crowston, R., Gutin, G., Jones, M., Ramanujan, M.: Fixed-parameter tractability of workflow satisfiability in the presence of seniority constraints. CoRR abs/1210.3978 (2012)Google Scholar
  5. 5.
    Crampton, J.: A reference monitor for workflow systems with constrained task execution. In: SACMAT 2005, pp. 38–47 (2005)Google Scholar
  6. 6.
    Crampton, J., Gutin, G.: Constraint Expressions and Workflow Satisfiability. In: SACMAT 2013 (to appear, 2013)Google Scholar
  7. 7.
    Crampton, J., Gutin, G., Yeo, A.: On the Parameterized Complexity and Kernelization of the Workflow Satisfiability Problem. ACM Trans. Inform. System & Secur. (to appear), Preliminary version in. ACM Conf. Comput. & Communic. Secur., pp. 857–868 (2012)Google Scholar
  8. 8.
    Fellows, M.R., Friedrich, T., Hermelin, D., Narodytska, N., Rosamond, F.A.: Constraint satisfaction problems: Convexity makes AllDifferent constraints tractable. Theor. Comput. Sci. 472, 81–89 (2013)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. In: Texts in Theoretical Computer Science. Springer (2006)Google Scholar
  10. 10.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kloks, T. (ed.): Treewidth. Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Marx, D.: Can you beat treewidth? Theory of Computing 6(1), 85–112 (2010)Google Scholar
  13. 13.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  14. 14.
    Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems. ACM Trans. Inf. Syst. Secur. 13(4), 40 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Crampton
    • 1
  • R. Crowston
    • 1
  • G. Gutin
    • 1
  • M. Jones
    • 1
  • M. S. Ramanujan
    • 2
  1. 1.Royal Holloway University of LondonUK
  2. 2.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations