Taaable: A Case-Based System for Personalized Cooking

  • Amélie Cordier
  • Valmi Dufour-Lussier
  • Jean Lieber
  • Emmanuel Nauer
  • Fadi Badra
  • Julien Cojan
  • Emmanuelle Gaillard
  • Laura Infante-Blanco
  • Pascal Molli
  • Amedeo Napoli
  • Hala Skaf-Molli
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 494)

Abstract

Taaable is a Case-Based Reasoning (CBR) system that uses a recipe book as a case base to answer cooking queries. Taaable participates in the Computer Cooking Contest since 2008. Its success is due, in particular, to a smart combination of various methods and techniques from knowledge-based systems: CBR, knowledge representation, knowledge acquisition and discovery, knowledge management, and natural language processing. In this chapter, we describe Taaable and its modules. We first present the CBR engine and features such as the retrieval process based on minimal generalization of a query and the different adaptation processes available. Next, we focus on the knowledge containers used by the system. We report on our experiences in building and managing these containers. The Taaable system has been operational for several years and is constantly evolving. To conclude, we discuss the future developments: the lessons that we learned and the possible extensions.

References

  1. 1.
    Baader, F., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical analysis of optimization techniques for terminological representation systems. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR’92), Cambridge, Massachussetts, pp. 270–281 (1992)Google Scholar
  2. 2.
    Badra, F.: Extraction de connaissances d’adaptation en raisonnement à partir de cas. Ph.D. thesis, Université Henri Poincaré—Nancy I (2009)Google Scholar
  3. 3.
    Badra, F., Cordier, A., Lieber, J.: Opportunistic adaptation knowledge discovery. In: Proceedings of 8th International Conference on Case-Based Reasoning Research and Development, ICCBR 2009, pp. 60–74, Seattle, WA, USA, 20–23 July 2009Google Scholar
  4. 4.
    Carpineto, C., Romamo, G.: Order-theoretical ranking. J. Am. Soc. Inf. Sci. 51(7), 587–613 (2000)Google Scholar
  5. 5.
    Cojan, J., Lieber, J.: Belief revision-based case-based reasoning. In: G. Richard (ed.) Proceedings of the ECAI-2012 Workshop SAMAI: Similarity and Analogy-Based Methods in AI, pp. 33–39 (2012)Google Scholar
  6. 6.
    Cordier, A.: Interactive knowledge acquisition in case based reasoning. Ph.D. thesis, Université Claude Bernard Lyon 1, France (2008)Google Scholar
  7. 7.
    Cordier, A., Lieber, J., Molli, P., Nauer, E., Skaf-Molli, H., Toussaint, Y.: WIKITAAABLE: a semantic wiki as a blackboard for a textual case-based reasoning system. In: SemWiki 2009—4th Semantic Wiki Workshop at the 6th European Semantic Web Conference—ESWC 2009, Heraklion, Grèce. http://hal.inria.fr/inria-00432353 (2009)
  8. 8.
    d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case base mining for adaptation knowledge acquisition. In: Proceedings of the International Conference on, Artificial Intelligence, IJCAI’07, pp. 750–756 (2007)Google Scholar
  9. 9.
    DeMiguel, J., Plaza, L., Díaz-Agudo, B.: ColibriCook: a CBR system for ontology-based recipe retrieval and adaptation. In: M. Schaaf (ed.) Workshop Proceedings of the 9th European Conference on Case-Based Reasoning, pp. 199–208, Trier (2008)Google Scholar
  10. 10.
    Developed, J.J.A., Knowledge, C.O.O.: P.J. Herrera and P. Iglesias and D. Romero and I. Rubio and B. Díaz-Agudo. In: M. Schaaf (ed.) Workshop Proceedings of the 9th European Conference on Case-Based Reasoning, pp. 209–218. Trier (2008)Google Scholar
  11. 11.
    Gaillard, E., Lieber, J., Nauer, E.: Adaptation knowledge discovery for cooking using closed itemset extraction. In: Proceedings of the 8th International Conference on Concept Lattices and their Applications—CLA 2011, pp. 87–99, Nancy, France. http://hal.inria.fr/hal-00646732 (2011)
  12. 12.
    Gaillard, E., Nauer, E., Lefevre, M., Cordier, A.: Extracting Generic Cooking Adaptation Knowledge for the TAAABLE Case-Based Reasoning System. In: Cooking with Computers workshop @ ECAI 2012. Montpellier, France (2012). http://hal.inria.fr/hal-00720481
  13. 13.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  14. 14.
    Hammond, K.J.: Case-Based Planning: Viewing Planning as a Memory Task. Academic Press, San Diego (1989)Google Scholar
  15. 15.
    Hanft, A., Newo, R., Bach, K., Ihle, N., Althoff, K.D.: Cookiis—a successful recipe advisor and menu advisor. In: Montani, S., Jain, L. (eds.) Successful Case-Based Reasoning applications, pp. 187–222. Springer, Berlin (2010)Google Scholar
  16. 16.
    Jo, T.C., Seo, J.H., Hyeon, K.: Topic spotting on news articles with topic repository by controlled indexing. In: Proceedings of the 2nd International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2000), Data Mining, Financial Engineering, and Intelligent Agents, pp. 386–391. Springer, London (2000). http://dl.acm.org/citation.cfm?id=646287.688630
  17. 17.
    Krötzsch, M., Schaffert, S., Vrandecic, D.: Reasoning in semantic wikis. In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.L., Tolksdorf, R. (eds.) Reasoning Web. Lecture Notes in Computer Science, vol. 4636, pp. 310–329. Springer, Berlin (2007)Google Scholar
  18. 18.
    Leake, D.B., Kinley, A., Wilson, D.: Acquiring case adaptation knowledge: a hybrid approach. In: AAAI/IAAI, vol. 1, pp. 684–689 (1996)Google Scholar
  19. 19.
    Lieber, J.: Strong, fuzzy and smooth hierarchical classification for case-based problem solving. In: van Harmelen, F. (ed.) Proceedings of the 15th European Conference on Artificial Intelligence (ECAI-02), Lyon, France, pp. 81–85. IOS Press, Amsterdam (2002)Google Scholar
  20. 20.
    Messai, N., Devignes, M.D., Napoli, A., Smaïl-Tabbone, M.: Querying a bioinformatic data sources registry with concept lattices. In: Dau, F., Mugnier, M.L., Stumme, G. (eds.) ICCS, Lecture Notes in Computer Science, vol. 3596, pp. 323–336. Springer, Berlin (2005)Google Scholar
  21. 21.
    Messai, N., Devignes, M.D., Napoli, A., Smaïl-Tabbone, M.: Many-valued concept lattices for conceptual clustering and information retrieval. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI, Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 127–131, IOS Press (2008)Google Scholar
  22. 22.
    Minor, M., Bergmann, R., Görg, S., Walter, K.: Adaptation of cooking instructions following the workflow paradigm. In: Marling, C. (ed.) ICCBR 2010 Workshop Proceedings, pp. 199–208 (2010)Google Scholar
  23. 23.
    Pearl, J.: Heuristics—Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Publishing Co., Reading, MA (1984)Google Scholar
  24. 24.
    Zhang, Q., Hu, R., Namee, B.M., Delany, S.J.: Back to the future: knowledge light case base cookery. In: Schaaf, M. (ed.) Workshop Proceedings of the 9th European Conference on Case-Based Reasoning, pp. 239–248, Trier (2008)Google Scholar
  25. 25.
    Smyth, B., Keane, M.T.: Using adaptation knowledge to retrieve and adapt design cases. Knowledge-Based Systems 9(2), 127–135 (1996)CrossRefGoogle Scholar
  26. 26.
    Szathmary, L., Napoli, A.: Coron: a framework for levelwise itemset mining algorithms. In: Ganter, B., Godin, R., Nguifo, E.M. (eds.) Supplementary Proceedings of 3rd International Conference on Formal Concept Analysis (ICFCA’05), Lens, France, pp. 110–113 (2005)Google Scholar
  27. 27.
    Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., Ciravegna, F.: Semantic annotation for knowledge management: requirements and a survey of the state of the art. J. Web Seman. Sci. Serv. Agents World Wide Web 4(1), 14–28 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Amélie Cordier
    • 1
  • Valmi Dufour-Lussier
    • 2
  • Jean Lieber
    • 2
  • Emmanuel Nauer
    • 2
  • Fadi Badra
    • 4
  • Julien Cojan
    • 2
  • Emmanuelle Gaillard
    • 2
  • Laura Infante-Blanco
    • 2
  • Pascal Molli
    • 3
  • Amedeo Napoli
    • 2
  • Hala Skaf-Molli
    • 3
  1. 1.LIRISCNRS, Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.LORIACNRS, INRIA, Université de LorraineVandœuvre-lès-NancyFrance
  3. 3.LINACNRS, Université de NantesNantes Cedex 3France
  4. 4.LIM&BIOUniversité Paris 13Bobigny CedexFrance

Personalised recommendations