Is Knowledge Power? The Role of Knowledge in Automated Requirements Elicitation

  • Hendrik Meth
  • Alexander Maedche
  • Maximilian Einoeder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7908)

Abstract

In large IS development projects a huge number of unstructured text documents become available and need to be analyzed and transformed into structured requirements. This elicitation process is known to be time-consuming and error-prone when performed manually by a requirements engineer. Thus, previous works have proposed to automate the process through alternative algorithms using different forms of knowledge. While the effectiveness of different algorithms has been intensively researched, limited efforts have been paid to investigate how the algorithms’ outcomes are determined by the utilized knowledge. Our work explores how the amount and type of knowledge affects requirements elicitation quality in two consecutive simulations. The study is based on a requirements elicitation system that has been developed as part of our previous work. We intend to contribute to the body of knowledge by outlining how the provided amount and type of knowledge determine the outcomes of automatic requirements elicitation.

Keywords

Requirements elicitation knowledge automation simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mich, L., Franch, M., Novi Inverardi, P.L.: Market research for requirements analysis using linguistic tools. Requirements Engineering 9, 40–56 (2004)CrossRefGoogle Scholar
  2. 2.
    Casamayor, A., Godoy, D., Campo, M.: Mining textual requirements to assist architectural software design: a state of the art review. Artificial Intelligence Review 38, 173–191 (2011)CrossRefGoogle Scholar
  3. 3.
    Ambriola, V., Gervasi, V.: On the Systematic Analysis of Natural Language Requirements with CIRCE. Automated Software Engineering 13, 107–167 (2006)CrossRefGoogle Scholar
  4. 4.
    Huffman Hayes, J., Dekhtyar, A., Sundaram, S.: Text Mining for Software Engineering: How Analyst Feedback Impacts Final Results. ACM SIGSOFT Software Engineering Notes 30, 1–5 (2005)CrossRefGoogle Scholar
  5. 5.
    Gacitua, R., Sawyer, P., Gervasi, V.: Relevance-based abstraction identification: technique and evaluation. Requirements Engineering 16, 251–265 (2011)CrossRefGoogle Scholar
  6. 6.
    Kof, L.: Natural Language Processing for Requirements Engineering: Applicability to Large Requirements Documents. In: Proceedings of the 19th International Conference on Automated Software Engineering (2004)Google Scholar
  7. 7.
    Sampaio, A., Rashid, A., Chitchyan, R., Rayson, P.: EA-Miner: Towards Automation in Aspect-Oriented Requirements Engineering. In: Rashid, A., Akşit, M. (eds.) Transactions on AOSD III. LNCS, vol. 4620, pp. 4–39. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-functional requirements. Requirements Engineering 12, 103–120 (2007)CrossRefGoogle Scholar
  9. 9.
    Casamayor, A., Godoy, D., Campo, M.: Identification of non-functional requirements in textual specifications: A semi-supervised learning approach. Information and Software Technology 52, 436–445 (2010)CrossRefGoogle Scholar
  10. 10.
    Meth, H., Li, Y., Maedche, A., Mueller, B.: Advancing Task Elicitation Systems – An Experimental Evaluation of Design Principles. In: Proceedings of the International Conference on Information Systems, ICIS 2012, Orlando, USA, paper 3 (2012)Google Scholar
  11. 11.
    Meth, H., Maedche, A., Einoeder, M.: Exploring design principles of task elicitation systems for unrestricted natural language documents. In: Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems - EICS 2012, pp. 205–210 (2012)Google Scholar
  12. 12.
    Ambriola, V., Gervasi, V.: Processing Natural Language Requirements. In: Proceedings of the 12th International Conference on Automated Software Engineering, pp. 36–45 (1997)Google Scholar
  13. 13.
    Vlas, R.E., Robinson, W.N.: Two Rule-Based Natural Language Strategies for Requirements Discovery and Classification in Open Source Software Development Projects. Journal of Management Information Systems 28, 11–38 (2012)CrossRefGoogle Scholar
  14. 14.
    Robertson, S., Robertson, J.: Mastering the Requirements Process. Pearson Education (2006)Google Scholar
  15. 15.
    Standards, I.C.S.S.E.S.C., I.-S.: IEEE Recommended Practice for Software Requirements Specifications. Institute of Electrical and Electronics Engineers (1998)Google Scholar
  16. 16.
    Berry, D., Gacitua, R., Sawyer, P., Tjong, S.F.: The Case for Dumb Requirements Engineering Tools. In: Regnell, B., Damian, D. (eds.) REFSQ 2011. LNCS, vol. 7195, pp. 211–217. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Goldin, L., Berry, D.M.: AbstFinder, A Prototype Natural Language Text Abstraction Finder for Use in Requirements Elicitation. Automated Software Engineering 4, 375–412 (1997)CrossRefGoogle Scholar
  18. 18.
    Lemaigre, C., García, J.G., Vanderdonckt, J.: Interface Model Elicitation from Textual Scenarios. In: Forbrig, P., Paternò, F., Pejtersen, A.M. (eds.) Human-Computer Interaction Symposium. IFIP, vol. 272, pp. 53–66. Springer, Boston (2008)CrossRefGoogle Scholar
  19. 19.
    Kaiya, H., Saeki, M.: Using Domain Ontology as Domain Knowledge for Requirements Elicitation. In: Proceedings of the 14th IEEE International Requirements Engineering Conference (RE 2006), pp. 189–198. IEEE (2006)Google Scholar
  20. 20.
    Wagner, C.: Breaking the Knowledge Acquisition Bottleneck Through Conversational Knowledge Management. Information Resources Management Journal 19, 70–83 (2006)CrossRefGoogle Scholar
  21. 21.
    Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge processes and ontologies. IEEE Intelligent Systems 16, 26–34 (2001)Google Scholar
  22. 22.
    Ward, J., Aurum, A.: Knowledge management in software engineering - describing the process. In: Proceedings of the Australian Software Engineering Conference, pp. 137–146 (2004)Google Scholar
  23. 23.
    Ajmal, M.M., Koskinen, K.U.: Knowledge Transfer in Project-Based Organizations: An Organizational Culture Perspective. Project Management Journal 39, 7–15 (2008)CrossRefGoogle Scholar
  24. 24.
    Mich, L.: NL-OOPS: from natural language to object oriented requirements using the natural language processing system LOLITA. Natural Language Engineering 2, 161–187 (1996)CrossRefGoogle Scholar
  25. 25.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley, Boston (1999)Google Scholar
  26. 26.
    Hart, A.: 801 Action Verbs For Communicators: Position Yourself First With Action Verbs For Journalists, Speakers, Educators, Students, Resume-writers, Editors &Travelers. iUniverse, Inc., Lincoln (2004)Google Scholar
  27. 27.
  28. 28.
    28. Sharp, H., Rogers, Y., Preece, J.: Interaction design: beyond human-computer interaction. John Willey & Sons Ltd., Chichester (2007) Google Scholar
  29. 29.
    Alavi, A., Leidner, D.: Review: Knowledge Management and Knowledge Management Systems: Conceptual Foundations and Research Issues. MIS Quarterly 25(1), 107–136 (2001)CrossRefGoogle Scholar
  30. 30.
    Markus, M.L.: Towards a Theory of Knowledge Reuse: Types of Knowledge Reuse Situations and Factors in Reuse Success. Journal of Management Information Systems 18(1), 57–94 (2001)MathSciNetGoogle Scholar
  31. 31.
    Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H., Van de Velde, W.: CommonKADS: a comprehensive methodology for KBS development. IEEE Expert 9, 28–37 (1994)CrossRefGoogle Scholar
  32. 32.
    Eriksson, H., Musen, M.: Metatools for knowledge acquisition. IEEE Software 10, 23–29 (1993)CrossRefGoogle Scholar
  33. 33.
    Patil, R.S., Fikes, R.E., Patel-Schneider, P.F., McKay, D., Finin, T., Gruber, T., Neches, R.: The DARPA knowledge sharing effort: progress report. Readings in agents, pp. 243–254. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  34. 34.
    Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intelligent Systems 16, 72–79 (2001)CrossRefGoogle Scholar
  35. 35.
    Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia - HYPERTEXT 2006, pp. 111–114. ACM Press, New York (2006)CrossRefGoogle Scholar
  36. 36.
    Benz, D., Hotho, A., Jäschke, R., Krause, B., Mitzlaff, F., Schmitz, C., Stumme, G.: The social bookmark and publication management system bibsonomy. The VLDB Journal 19, 849–875 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hendrik Meth
    • 1
  • Alexander Maedche
    • 1
  • Maximilian Einoeder
    • 1
  1. 1.Institute for Enterprise Systems and Information Systems IVUniversity of MannheimGermany

Personalised recommendations