Profiling Event Logs to Configure Risk Indicators for Process Delays

  • Anastasiia Pika
  • Wil M. P. van der Aalst
  • Colin J. Fidge
  • Arthur H. M. ter Hofstede
  • Moe T. Wynn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7908)

Abstract

Risk identification is one of the most challenging stages in the risk management process. Conventional risk management approaches provide little guidance and companies often rely on the knowledge of experts for risk identification. In this paper we demonstrate how risk indicators can be used to predict process delays via a method for configuring so-called Process Risk Indicators (PRIs). The method learns suitable configurations from past process behaviour recorded in event logs. To validate the approach we have implemented it as a plug-in of the ProM process mining framework and have conducted experiments using various data sets from a major insurance company.

Keywords

process risk indicators process mining risk identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Balasubramanian, S., Gupta, M.: Structural metrics for goal based business process design and evaluation. Business Process Management Journal 11(6), 680–694 (2005)CrossRefGoogle Scholar
  3. 3.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business process intelligence. Computers in Industry 53(3), 321–343 (2004)CrossRefGoogle Scholar
  4. 4.
    Grigori, D., Casati, F., Dayal, U., Shan, M.C.: Improving business process quality through exception understanding, prediction, and prevention. In: 27th International Conference on Very Large Databases (VLDB 2001). Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  5. 5.
    Hollands, J.G., Wickens, C.D.: Engineering psychology and human performance. Prentice Hall, New Jersey (1999)Google Scholar
  6. 6.
    International Organization for Standardization. Risk management: vocabulary = Management du risque: vocabulaire (ISO guide 73), Geneva (2009)Google Scholar
  7. 7.
    Jallow, A.K., Majeed, B., Vergidis, K., Tiwari, A., Roy, R.: Operational risk analysis in business processes. BT Technology Journal 25(1), 168–177 (2007)CrossRefGoogle Scholar
  8. 8.
    Jans, M., Lybaert, N., Vanhoof, K., van der Werf, J.M.: A business process mining application for internal transaction fraud mitigation. Expert Systems with Applications 38(10), 13351–13359 (2011)CrossRefGoogle Scholar
  9. 9.
    Jansen-Vullers, M.H., Reijers, H.A.: Business process redesign in healthcare: Towards a structured approach. Quality Control and Applied Statistics 52(1), 99 (2007)Google Scholar
  10. 10.
    Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145. Lawrence Erlbaum Associates Ltd. (1995)Google Scholar
  11. 11.
    Mansar, S.L., Reijers, H.A.: Best practices in business process redesign: use and impact. Business Process Management Journal 13(2), 193–213 (2007)CrossRefGoogle Scholar
  12. 12.
    Moeller, R.: COSO enterprise risk management: understanding the new integrated ERM framework. In: Components of COSO ERM. ch. 3, pp. 47–93. John Wiley & Sons, Inc., Hoboken (2007)Google Scholar
  13. 13.
    Nakatumba, J., van der Aalst, W.M.P.: Analyzing Resource Behavior Using Process Mining. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 69–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Standards Australia and Standards New Zealand. Risk management: principles and guidelines (AS/NZS ISO 31000:2009), 3rd edn., Sydney, NSW, Wellington, NZ (2009)Google Scholar
  16. 16.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)MATHGoogle Scholar
  17. 17.
    van der Aalst, W.M.P., Dustdar, S.: Process mining put into context. IEEE Internet Computing 16(1), 82–86 (2012)CrossRefGoogle Scholar
  18. 18.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Information Systems 36(2), 450–475 (2011)CrossRefGoogle Scholar
  19. 19.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  20. 20.
    van Dongen, B., Crooy, R., van der Aalst, W.M.P.: Cycle time prediction: When will this case finally be finished? In: On the Move to Meaningful Internet Systems: OTM 2008, pp. 319–336 (2008)Google Scholar
  21. 21.
    Wickboldt, J.A., Bianchin, L.A., Lunardi, R.C., Granville, L.Z., Gaspary, L.P., Bartolini, C.: A framework for risk assessment based on analysis of historical information of workflow execution in IT systems. Computer Networks 55(13), 2954–2975 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anastasiia Pika
    • 1
  • Wil M. P. van der Aalst
    • 2
    • 1
  • Colin J. Fidge
    • 1
  • Arthur H. M. ter Hofstede
    • 1
    • 2
  • Moe T. Wynn
    • 1
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations