Understanding Process Behaviours in a Large Insurance Company in Australia: A Case Study

  • Suriadi Suriadi
  • Moe T. Wynn
  • Chun Ouyang
  • Arthur H. M. ter Hofstede
  • Nienke J. van Dijk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7908)

Abstract

Having a reliable understanding about the behaviours, problems, and performance of existing processes is important in enabling a targeted process improvement initiative. Recently, there has been an increase in the application of innovative process mining techniques to facilitate evidence-based understanding about organizations’ business processes. Nevertheless, the application of these techniques in the domain of finance in Australia is, at best, scarce. This paper details a 6-month case study on the application of process mining in one of the largest insurance companies in Australia. In particular, the challenges encountered, the lessons learned, and the results obtained from this case study are detailed. Through this case study, we not only validated existing ‘lessons learned’ from other similar case studies, but also added new insights that can be beneficial to other practitioners in applying process mining in their respective fields.

Keywords

process mining case study business process management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Weerdt, J., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Leveraging process discovery with trace clustering and text mining for intelligent analysis of incident management processes. In: IEEE CEC, pp. 1–8. IEEE (2012)Google Scholar
  2. 2.
    Fahland, D., van der Aalst, W.M.P.: Simplifying mined process models: An approach based on unfoldings. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 362–378. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Gartner. Gartner exp worldwide survey of nearly 1,600 CIOs shows IT budgets in 2010 to be at 2005 levels. Gartner (2010)Google Scholar
  4. 4.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Jans, M., van der Werf, J.M., Lybaert, N., Vanhoof, K.: A business process mining application for internal transaction fraud mitigation. Expert Syst. Appl. 38(10), 13351–13359 (2011)CrossRefGoogle Scholar
  6. 6.
    Jans, M.J.: Process mining in auditing: From current limitations to future challenges. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 394–397. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Jones, T.: Understand how ABPD can help improve business processes. Gartner (March 2012)Google Scholar
  8. 8.
    Mans, R., et al.: Process mining techniques: an application to stroke care. In: Ehealth Beyond the Horizon- Get it There, pp. 573–578. IOS Press (2008)Google Scholar
  9. 9.
    Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: A methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)CrossRefGoogle Scholar
  11. 11.
    Rozinat, A., de Jong, I.S.M., Gunther, C.W., van der Aalst, W.M.P.: Process mining applied to the test process of wafer scanners in ASML. IEEE Trans. on System., Man, and Cybernetics, Part C 39(4), 474–479 (2009)CrossRefGoogle Scholar
  12. 12.
    Saravanan, M.S.: Application of process mining in insurance: A case study for UTI. Int. Jour. of Adv. Comp. and Math. Sciences 2(3), 141–150 (2011)Google Scholar
  13. 13.
    Smith, K.A., Willis, R.J., Brooks, M.: An analysis of customer retention and insurance claim patterns using data mining: a case study. Journal of the Operational Research Society 51(5), 532–541 (2000)MATHGoogle Scholar
  14. 14.
    Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  16. 16.
    van der Aalst, W.M.P.: Using process mining to bridge the gap between BI and BPM. Computer 44(12), 77–80 (2011)CrossRefGoogle Scholar
  17. 17.
    van der Aalst, W.M.P.: Decomposing process mining problems using passages. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    van der Aalst, W.M.P., et al.: Business process mining: An industrial application. Inf. Syst. 32, 713–732 (2007)CrossRefGoogle Scholar
  19. 19.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Supported Coop. Work 14(6), 549–593 (2005)CrossRefGoogle Scholar
  21. 21.
    van der Heijden, T.H.C.: Process mining project methodology: Developing a general approach to apply process mining in practice. Master’s thesis, Eindhoven University of Technology (2012)Google Scholar
  22. 22.
    van der Wiel, T.: Process mining using integer linear programming. Master’s thesis, Eindhoven University of Technology (2010)Google Scholar
  23. 23.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Weijters, A.J.M.M., van der Aalst, W.M.P., Medeiros, A.K.A.: Process mining with the heuristic miner-algorithm. BETA Working Paper Series WP 166, Eindhoven University of Technology, Eindhoven, The Netherlands (2006)Google Scholar
  25. 25.
    Witten, I.H., et al.: Weka: Practical machine learning tools and techniques with Java implementations. In: Emerging Knowledge Engineering and Connectionist-Based Information Systems, pp. 192–196. University of Otago (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Suriadi Suriadi
    • 1
  • Moe T. Wynn
    • 1
  • Chun Ouyang
    • 1
  • Arthur H. M. ter Hofstede
    • 1
    • 2
  • Nienke J. van Dijk
    • 2
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations