End-User Experiences of Visual and Textual Programming Environments for Arduino

  • Tracey Booth
  • Simone Stumpf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7897)


Arduino is an open source electronics platform aimed at hobbyists, artists, and other people who want to make things but do not necessarily have a background in electronics or programming. We report the results of an exploratory empirical study that investigated the potential for a visual programming environment to provide benefits with respect to efficacy and user experience to end-user programmers of Arduino as an alternative to traditional text-based coding. We also investigated learning barriers that participants encountered in order to inform future programming environment design. Our study provides a first step in exploring end-user programming environments for open source electronics platforms.


End-user programmers Arduino Visual Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benedek, J., Miner, T.: Measuring Desirability: New methods for evaluating desirability in a usability lab setting. Presented at the Usability Professionals’ Association Conference 2002, Orlando, Florida, USA (July 8, 2002)Google Scholar
  2. 2.
    Blackwell, A.F.: Metacognitive Theories of Visual Programming: What do we think we are doing? In: Proceedings of the IEEE Symposium on Visual Languages, pp. 240–246 (1996)Google Scholar
  3. 3.
    Brandt, J., et al.: Opportunistic Programming: How Rapid Ideation and Prototyping Occur in Practice. In: Proceedings of the 4th International Workshop on End-user Software Engineering, pp. 1–5. ACM, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Burnett, M., et al.: Forms/3: A First-Order Visual Language to Explore the Boundaries of the Spreadsheet Paradigm. Journal of Functional Programming 11(02), 155–206 (2001)MATHGoogle Scholar
  5. 5.
    Cao, J., et al.: End-User Mashup Programming: Through the Design Lens. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 1009–1018. ACM, New York (2010)Google Scholar
  6. 6.
    Compeau, D.R., Higgins, C.A.: Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly 19(2), 189–211 (1995)CrossRefGoogle Scholar
  7. 7.
    Franklin, D., et al.: Assessment of Computer Science Learning in a Scratch-Based Outreach Program. In: Proceeding of the 44th ACM Technical Symposium on Computer Science Education, pp. 371–376. ACM, New York (2013)Google Scholar
  8. 8.
    Gilmore, D.J., Green, T.R.G.: Comprehension and Recall of Miniature Programs. International Journal of Man-Machine Studies 21(1), 31–48 (1984)CrossRefGoogle Scholar
  9. 9.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, pp. 239–250. North Holland, Amsterdam (1988)Google Scholar
  10. 10.
    Hartmann, B., et al.: Hacking, Mashing, Gluing: Understanding Opportunistic Design. IEEE Pervasive Computing 7(3), 46–54 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ko, A.J., et al.: Six Learning Barriers in End-User Programming Systems. In: Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric Computing, pp. 199–206. IEEE Computer Society, Washington, DC (2004)Google Scholar
  12. 12.
    Kulesza, T., et al.: Fixing the Program My Computer Learned: Barriers for End Users, Challenges for the Machine. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, pp. 187–196. ACM, New York (2009)Google Scholar
  13. 13.
    Malan, D.J., Leitner, H.H.: Scratch for Budding Computer Scientists. In: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education, pp. 223–227. ACM, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Maloney, J.H., et al.: Programming by Choice: Urban Youth Learning Programming with Scratch. In: Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education, pp. 367–371. ACM, New York (2008)CrossRefGoogle Scholar
  15. 15.
    Meerbaum-Salant, O., et al.: Habits of Programming in Scratch. In: Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education, pp. 168–172. ACM, New York (2011)Google Scholar
  16. 16.
    Meerbaum-Salant, O., et al.: Learning Computer Science Concepts with Scratch. In: Proceedings of the Sixth International Workshop on Computing Education Research, pp. 69–76. ACM, New York (2010)CrossRefGoogle Scholar
  17. 17.
    Millner, A., Baafi, E.: Modkit: Blending and Extending Approachable Platforms for Creating Computer Programs and Interactive Objects. In: Proceedings of the 10th International Conference on Interaction Design and Children, pp. 250–253. ACM, New York (2011)Google Scholar
  18. 18.
    Resnick, M., et al.: Scratch: Programming for All. Commun. ACM 52(11), 60–67 (2009)CrossRefGoogle Scholar
  19. 19.
    Turkle, S., Papert, S.: Epistemological Pluralism and the Revaluation of the Concrete. Journal of Mathematical Behavior 11(1), 3–33 (1992)Google Scholar
  20. 20.
    Whitley, K.N.: Visual Programming Languages and the Empirical Evidence for and Against. Journal of Visual Languages & Computing 8(1), 109–142 (1997)CrossRefGoogle Scholar
  21. 21.
    Wolz, U., et al.: Starting with Scratch in CS 1. In: Proceedings of the 40th ACM Technical Symposium on Computer Science Education, pp. 2–3. ACM, New York (2009)CrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
    Download the Arduino Software, http://arduino.cc/en/Main/Software
  25. 25.
  26. 26.
  27. 27.
  28. 28.
    Modkit Alpha Club, http://www.modk.it/alpha
  29. 29.
    Morae usability testing software, http://www.techsmith.com/morae.html
  30. 30.
    MzTEK: A learning community in technology and arts for women, http://www.mztek.org/
  31. 31.
    National Instruments LabVIEW, http://www.ni.com/labview/
  32. 32.
  33. 33.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tracey Booth
    • 1
  • Simone Stumpf
    • 1
  1. 1.City University LondonUK

Personalised recommendations