A Programming Framework for Multi-agent Coordination of Robotic Ecologies

  • M. Dragone
  • S. Abdel-Naby
  • D. Swords
  • G. M. P. O’Hare
  • M. Broxvall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7837)

Abstract

Building smart environments with Robotic ecologies, comprising of distributed sensors, actuators and mobile robot devices facilitates and extends the nature and form of smart environments that can be developed, and reduces the complexity and cost of such solutions. While the potentials of such an approach makes robotic ecologies increasingly popular, many fundamental research questions remain open. One such question is how to make a robotic ecology self-adaptive, so as to adapt to changing conditions and evolving requirements, and consequently reduce the amount of preparation and pre-programming required for their deployment in real world applications. This paper presents a framework for the specification and the programming of robotic ecologies. The framework extends an existing agent system and integrates it with the pre-existing and dominant traditional robotic and middleware approach to the development of robotic ecologies. We illustrate how these technologies complement each other and offer a candidate technology to pursue adaptive robotic ecologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., López, R., Maguire, L., Mcginnity, T.M., Micheli, A., Renteria, A., O’Hare, G.P., Pecora, F.: Robotic UBIquitous COgnitive network. In: Novais, P., Hallenborg, K., Tapia, D.I., Rodríguez, J.M.C. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 153, pp. 191–195. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Robotic UBIquitous COgnitive Network, http://fp7rubicon.eu
  3. 3.
    Dragone, M.: Component & Service-based Agent Systems: Self-OSGi. In: ICAART (1), pp. 200–210 (2012)Google Scholar
  4. 4.
    Dragone, M.: A BDI Model for Component and Service-Based Systems: Self-OSGi. In: PAAMS, pp. 67–72 (2012)Google Scholar
  5. 5.
    Alliance, O.: OSGi Service Platform: The OSGi Alliance. IOS Press, US (2007)Google Scholar
  6. 6.
    Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R., Rashid, M.J., Seo, B., Cho, Y.J.: The PEIS-Ecology Project: Vision and results. In: IROS, pp. 2329–2335 (2008)Google Scholar
  7. 7.
    Broxvall, M.: The PEIS Kernel: A Middleware for Ubiquitous Robotics. In: Proc. of the IROS 2007 Workshop on Ubiquitous Robotic Space Design and Applications (2007)Google Scholar
  8. 8.
    Lundh, R., Karlsson, L., Saffiotti, A.: Plan-Based Configuration of an Ecology of Robots. In: ICRA, pp. 64–70 (2007)Google Scholar
  9. 9.
    Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems of BDI Agents (1996)Google Scholar
  10. 10.
    Pokahr, A., Braubach, L., Lamersdorf, W.: A Goal Deliberation Strategy for BDI Agent Systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Ross, R., Collier, R., O’Hare, G.M.P.: AF-APL: Bridging Principles & Practices in Agent Oriented Languages. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 66–88. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: An open-source robot operating system. In: ICRA Workshop on Open Source Software, Anchorage, USA (2009)Google Scholar
  13. 13.
    Kaminsky, A.: Infrastructure for Distributed Applications in Ad Hoc Networks of Small Mobile Wireless Devices. Tech. rep., Rochester Institute of Technology, IT Lab (2001)Google Scholar
  14. 14.
    Hellenschmidt, M., Kirste, T.: Self-organization for Multicomponent Multimedia Environments. In: Proc. of the UniComp Workshop on Ubiquitous Display Environments (2004)Google Scholar
  15. 15.
    Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Oaks, S., Traversat, B., Gong, L.: JXTA in a Nutshell. O’Reilly, Sebastopol (2002)Google Scholar
  17. 17.
    Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart, J.O., White, S.R.: A Multi-Agent Systems Approach to Autonomic Computing. In: AAMAS, pp. 464–471 (2004)Google Scholar
  18. 18.
    Gritti, M., Broxvall, M., Saffiotti, A.: Reactive Self-Configuration of an Ecology of Robots. In: Proc. of the ICRA 2007 Workshop on Network Robot Systems, Rome, Italy, pp. 49–56 (2007)Google Scholar
  19. 19.
    Parker, L.E., Tang, F.: Distributed multi-robot coalitions through asymtre-d. In: Proc. of IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada (2005)Google Scholar
  20. 20.
    Zhang, Y., Parker, L.E.: Iq-asymtre: Synthesizing coalition formation and execution for tightly-coupled multirobot tasks. In: Proc. of IEEE International Conference on Intelligent Robots and Systems, Taipai, Taiwan (2010)Google Scholar
  21. 21.
    Donald, B.R., Jennings, J., Rus, D.: Towards a theory of information invariants for cooperating autonomous mobile robots. Technical report, Ithaca, NY, USA (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Dragone
    • 1
  • S. Abdel-Naby
    • 1
  • D. Swords
    • 1
  • G. M. P. O’Hare
    • 1
  • M. Broxvall
    • 2
  1. 1.University College DublinDublinIreland
  2. 2.Örebro UniversityÖrebroSweden

Personalised recommendations