Results on Equivalence, Boundedness, Liveness, and Covering Problems of BPP-Petri Nets

  • Ernst W. Mayr
  • Jeremias Weihmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7927)


Yen proposed a construction for a semilinear representation of the reachability set of BPP-Petri nets which can be used to decide the equivalence problem of two BPP-PNs in doubly exponential time. We first address a gap in this construction which therefore does not always represent the reachability set. We propose a solution which is formulated in such a way that a large portion of Yen’s construction and proof can be retained, preserving the size of the semilinear representation and the double exponential time bound (except for possibly larger values of some constants). In the second part of the paper, we propose very efficient algorithms for several variations of the boundedness and liveness problems of BPP-PNs. For several more complex notions of boundedness, as well as for the covering problem, we show NP-completeness. To demonstrate the contrast between BPP-PNs and a slight generalization regarding edge multiplicities, we show that the complexity of the classical boundedness problem increases from linear time to coNP-hardness. Our results also imply corresponding complexity bounds for related problems for process algebras and (commutative) context-free grammars.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Christensen, S.: Distributed bisimularity is decidable for a class of infinite state-space systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 148–161. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation equivalence is decidable for basic parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes. Fundamenta Informaticae 31(1), 13–25 (1997)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Esparza, J., Rossmanith, P., Schwoon, S.: A uniform framework for problems on context-free grammars. EATCS Bulletin 72, 169–177 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Huynh, D.T.: The complexity of semilinear sets. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 324–337. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  6. 6.
    Huynh, D.T.: Commutative grammars: The complexity of uniform word problems. Information and Control 57(1), 21–39 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Huynh, D.T.: A simple proof for the sum upper bound of the inequivalence problem for semilinear sets. Elektronische Informationsverarbeitung und Kybernetik, 147–156 (1986)Google Scholar
  8. 8.
    Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Kučera, A.: Regularity is decidable for normed PA processes in polynomial time. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 111–122. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri nets. J. ACM 25, 352–364 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC 1981, pp. 238–246. ACM, New York (1981)CrossRefGoogle Scholar
  12. 12.
    Mayr, E.W., Weihmann, J.: Results on equivalence, boundedness, liveness, and covering problems of BPP-Petri nets. Technical Report TUM-I1325, Institut für Informatik, TU München (March 2013)Google Scholar
  13. 13.
    Mayr, R.: Tableau methods for PA-processes. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 276–290. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-State Systems. PhD thesis, Technische Universitt Mijnchen (1998)Google Scholar
  15. 15.
    Mayr, R.: On the complexity of bisimulation problems for basic parallel processes. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 329–341. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  17. 17.
    Pottier, L.: Minimal solutions of linear diophantine systems: bounds and algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 162–173. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. 18.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Yen, H.-C.: On reachability equivalence for BPP-nets. Theoretical Computer Science 179(1-2), 301–317 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ernst W. Mayr
    • 1
  • Jeremias Weihmann
    • 1
  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations